

Networking

Friday Four Square!
Outside Gates, 4:15PM

An Interesting Article

NYTimes: “Unreported Side Effects of
Drugs Are Found Using Internet Search

Data, Study Finds”

http://www.nytimes.com/2013/03/07/science/
unreported-side-effects-of-drugs-found-usi
ng-internet-data-study-finds.html?hp&_r=0

http://www.nytimes.com/2013/03/07/science/unreported-side-effects-of-drugs-found-using-internet-data-study-finds.html?hp&_r=0
http://www.nytimes.com/2013/03/07/science/unreported-side-effects-of-drugs-found-using-internet-data-study-finds.html?hp&_r=0
http://www.nytimes.com/2013/03/07/science/unreported-side-effects-of-drugs-found-using-internet-data-study-finds.html?hp&_r=0

Announcements

● Second midterm exam this upcoming
Monday, March 11 from 7PM – 10PM in
Memorial Auditorium.
● Review session tomorrow from 1PM – 3PM

in Hewlett 200.

● Alternate exam times: if you have not
heard back from Gil yet, contact us ASAP.

Computer Networks

● Computer networks allow us to get
amazing things done.
● Sharing knowledge (Wikipedia, Khan Academy,

Coursera, Udacity, etc.)
● Solving huge problems (folding@home, SETI,

etc.)

● Computer networks prevent us from
getting amazing things done.
● Social networks (Facebook, Google+, etc.)
● Streaming video (Hulu, Netflix, etc.)

How does it all work?

LOL

LOL

LOL

LOL

LOL

LOL

OMG
LOL

Sending Data

● Data is sent across the Internet in
packets.

● Each packet contains a message (called
the payload), along with extra
information to help it get to its
destination correctly.

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

133.0.0.1
LOL

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

133.0.0.1
LOL

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

133.0.0.1
LOL

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

133.0.0.1
LOL

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

133.0.0.1
LOL

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

133.0.0.1
LOL

128.0.0.1 128.0.0.2
128.0.0.0

129.0.0.0

129.0.0.1

130.0.0.0
130.0.0.1

130.0.0.2

131.0.0.0

132.0.0.0 133.0.0.0

133.0.0.1

133.0.0.2

ROFLCOPTER

IP Addresses

● Each computer may have one or more IP
addresses so that it can receive
messages over the Internet.
● Similar to a phone number.

● There are two types of IP addresses:
● IPv4: 232 possible addresses (about four

billion), and we've just about run out!
● IPv6: 2128 possible addresses (about 4×1034),

and we're very unlikely to run out in the
future.

Hostnames

● In order to make it easier to find remote
computers, computers can have names
associated with them.
● www.google.com
● www.stanford.edu

● These names are called hostnames.

● A system called the domain name system (or
DNS) is responsible for converting domain
names into IP addresses.
● Like a huge HashMap<String, IP Address>

http://www.google.com/
http://www.stanford.edu/

A Small Problem

● At any one time, you could be
● Surfing the web,
● Downloading music from iTunes,
● Checking your email,
● Chatting on IM,
● etc.

● You might have packets from many different
machines all arriving at once.

● How does the computer know how to send
each message to the right program?

Ports

● Every packet is labeled with a port
number that lets the destination
computer know how to process the
message.

● Different applications listen in on
different ports:
● Sending mail (SMTP): Port 25
● Browsing the web (HTTP): Port 80
● Checking email (IMAP): Port 143

368980 143

368980 143

80
CutePuppies.html

368980 143

80
CutePuppies.html

368980 143

368980 143

3689
Never Gonna Give

You Up.m4a

368980 143

3689
Never Gonna Give

You Up.m4a

368980 143

Sockets

● A socket is a combination of an IP address
(destination computer) and port number
(what program should read the message).

● All the information necessary to ensure
that a message gets to the right program
on the right computer.

● To set up a connection to a remote
computer, you need to create a socket
connection to that computer.

Application Protocols

● Now that we can get computers talking
to one another, how do they
communicate information in a
meaningful way?

● An application protocol is a set of rules
computers can follow to communicate
over a network.

● Each computer follows the rules of the
protocol to share information.

An Example: HTTP

Networking in Java

● To connect to a remote machine:
● Create a socket connection to the machine

by giving a combination of the host name
and the port.

● Create a BufferedReader to read messages
coming from the other computer.

● Create a PrintWriter to send messages to
the other computer.

● Send and receive messages as you see fit!

Client/Server Architecture

● A server is a program that waits for
incoming connections.
● Typically, has some data or service that it

can provide.

● A client is a program that initiates a
connection to a server.
● Typically, wants to use that data or service.
● The program we just wrote was a client that

connected to a remote web server.

Acting as a Server

● A program can act as a server as follows:
● Create a ServerSocket on a given port and

wait for an incoming connection.
● Obtain a Socket that lets you communicate

with the machine that has connected.
● Proceed as before.

A Simple Chat Program

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

