

Starting Off in Java

Announcements

● Programming Assignment 1 is due this Friday.
● Recommendation: Try to complete a first draft of all

four programs by this Wednesday so that you have time
to debug and test them at the end of the week.

● Section signups closed yesterday at 5PM; section
assignments will be announced soon.
● Missed section signups? Section signups will reopen on

Tuesday afternoon, though with more limited options.

● LaIR hours start tonight! Open 6PM – midnight
from Sunday through Thursday.
● Located on the second floor of Tresidder.

Outline for Today

● Programming in Java
● What does Java look like outside of Karel?

● Variables, Types, and Values
● Storing information for later.

● Expressions
● Mathematical operations in Java.

● Graphics
● Oooh! Shiny!

A Farewell to Karel

Welcome to Java!

What is Java?

● Java is an industrial programming
language used to build large
applications.

● Used in web servers, Android phones,
desktop applications, etc.

● Extremely common; easily one of the
most popular programming languages in
use today.

Transitioning to Java

● The Karel code that you've written so far
is perfectly legal Java code.

● However, there are many key aspects of
the Java programming language we
haven't yet touched on.

● The remainder of this class will focus on
those more general Java features and
how to make the most use of them.

Our First Java Program

Dissecting our Program

import acm.program.*;

public class AddTwoIntegers extends ConsoleProgram {
public void run() {

println("This program adds two integers.");

// Read two values from the user.
int n1 = readInt("Enter first integer: ");
int n2 = readInt("Enter second integer: ");

// Compute their sum.
int sum = n1 + n2;

// Print out the summation
println("The sum of those numbers is " + sum);

}
}

import acm.program.*;

public class AddTwoIntegers extends ConsoleProgram {
public void run() {

println("This program adds two integers.");

// Read two values from the user.
int n1 = readInt("Enter first integer: ");
int n2 = readInt("Enter second integer: ");

// Compute their sum.
int sum = n1 + n2;

// Print out the summation
println("The sum of those numbers is " + sum);

}
}

import acm.program.*;

public class AddTwoIntegers extends ConsoleProgram {
public void run() {

println("This program adds two integers.");

// Read two values from the user.
int n1 = readInt("Enter first integer: ");
int n2 = readInt("Enter second integer: ");

// Compute their sum.
int sum = n1 + n2;

// Print out the summation
println("The sum of those numbers is " + sum);

}
}

The boilerplate code here looks
similar to a Karel program, but

there are some differences. Notice
that we're now extending

ConsoleProgram and that the import
is different.

The boilerplate code here looks
similar to a Karel program, but

there are some differences. Notice
that we're now extending

ConsoleProgram and that the import
is different.

import acm.program.*;

public class AddTwoIntegers extends ConsoleProgram {
public void run() {

println("This program adds two integers.");

// Read two values from the user.
int n1 = readInt("Enter first integer: ");
int n2 = readInt("Enter second integer: ");

// Compute their sum.
int sum = n1 + n2;

// Print out the summation
println("The sum of those numbers is " + sum);

}
}

import acm.program.*;

public class AddTwoIntegers extends ConsoleProgram {
public void run() {

println("This program adds two integers.");

// Read two values from the user.
int n1 = readInt("Enter first integer: ");
int n2 = readInt("Enter second integer: ");

// Compute their sum.
int sum = n1 + n2;

// Print out the summation
println("The sum of those numbers is " + sum);

}
}

import acm.program.*;

public class AddTwoIntegers extends ConsoleProgram {
public void run() {

println("This program adds two integers.");

// Read two values from the user.
int n1 = readInt("Enter first integer: ");
int n2 = readInt("Enter second integer: ");

// Compute their sum.
int sum = n1 + n2;

// Print out the summation
println("The sum of those numbers is " + sum);

}
} This is the run

method. As with Karel
programs, our Java

programs start here.

This is the run
method. As with Karel

programs, our Java
programs start here.

import acm.program.*;

public class AddTwoIntegers extends ConsoleProgram {
public void run() {

println("This program adds two integers.");

// Read two values from the user.
int n1 = readInt("Enter first integer: ");
int n2 = readInt("Enter second integer: ");

// Compute their sum.
int sum = n1 + n2;

// Print out the summation
println("The sum of those numbers is " + sum);

}
}

Each of these lines of code is
called a statement. As with Karel
commands, each statement ends

with a semicolon.

Each of these lines of code is
called a statement. As with Karel
commands, each statement ends

with a semicolon.

import acm.program.*;

public class AddTwoIntegers extends ConsoleProgram {
public void run() {

println("This program adds two integers.");

// Read two values from the user.
int n1 = readInt("Enter first integer: ");
int n2 = readInt("Enter second integer: ");

// Compute their sum.
int sum = n1 + n2;

// Print out the summation
println("The sum of those numbers is " + sum);

}
}

The println method (print line)
displays a line of text on the

screen. The quoted text in the
parentheses is the argument to

the method.

The println method (print line)
displays a line of text on the

screen. The quoted text in the
parentheses is the argument to

the method.

import acm.program.*;

public class AddTwoIntegers extends ConsoleProgram {
public void run() {

println("This program adds two integers.");

// Read two values from the user.
int n1 = readInt("Enter first integer: ");
int n2 = readInt("Enter second integer: ");

// Compute their sum.
int sum = n1 + n2;

// Print out the summation
println("The sum of those numbers is " + sum);

}
}

These statements are called
variable declarations. They allow

us to give names to quantities
(here, the first two numbers

entered and their sum).

These statements are called
variable declarations. They allow

us to give names to quantities
(here, the first two numbers

entered and their sum).

import acm.program.*;

public class AddTwoIntegers extends ConsoleProgram {
public void run() {

println("This program adds two integers.");

// Read two values from the user.
int n1 = readInt("Enter first integer: ");
int n2 = readInt("Enter second integer: ");

// Compute their sum.
int sum = n1 + n2;

// Print out the summation
println("The sum of those numbers is " + sum);

}
} These are comments.

The /* … */ comments still
work in Java; this is

another option.

These are comments.
The /* … */ comments still

work in Java; this is
another option.

Working with Variables

● The previous program declared three
variables: n1, n2, and sum.

● In the previous example, we used these
variables to keep track of values that the
user entered and to store information for
later on.

● Variables are very important in Java, so
we'll start with a quick overview of how to
use them.

Variables

● A variable is a location where a program can
store information for later use.

● Each variable has three pieces of information
associated with it:
● Name: What is the variable called?
● Type: What sorts of things can you store in the

variable?
● Value: What value does the variable have at any

particular moment in time?

Variables

● A variable is a location where a program can
store information for later use.

● Each variable has three pieces of information
associated with it:
● Name: What is the variable called?
● Type: What sorts of things can you store in the

variable?
● Value: What value does the variable have at any

particular moment in time?

Variables

● A variable is a location where a program can
store information for later use.

● Each variable has three pieces of information
associated with it:
● Name: What is the variable called?
● Type: What sorts of things can you store in the

variable?
● Value: What value does the variable have at any

particular moment in time?

Variables

● A variable is a location where a program can
store information for later use.

● Each variable has three pieces of information
associated with it:
● Name: What is the variable called?
● Type: What sorts of things can you store in the

variable?
● Value: What value does the variable have at any

particular moment in time?

Variables

● A variable is a location where a program can
store information for later use.

● Each variable has three pieces of information
associated with it:
● Name: What is the variable called?
● Type: What sorts of things can you store in the

variable?
● Value: What value does the variable have at any

particular moment in time?

int numVoters

Variables

● A variable is a location where a program can
store information for later use.

● Each variable has three pieces of information
associated with it:
● Name: What is the variable called?
● Type: What sorts of things can you store in the

variable?
● Value: What value does the variable have at any

particular moment in time?

int numVoters

Variables

● A variable is a location where a program can
store information for later use.

● Each variable has three pieces of information
associated with it:
● Name: What is the variable called?
● Type: What sorts of things can you store in the

variable?
● Value: What value does the variable have at any

particular moment in time?

int numVoters

Variables

● A variable is a location where a program can
store information for later use.

● Each variable has three pieces of information
associated with it:
● Name: What is the variable called?
● Type: What sorts of things can you store in the

variable?
● Value: What value does the variable have at any

particular moment in time?

int numVoters

Variables

● A variable is a location where a program can
store information for later use.

● Each variable has three pieces of information
associated with it:
● Name: What is the variable called?
● Type: What sorts of things can you store in the

variable?
● Value: What value does the variable have at any

particular moment in time?

137 int numVoters

Variables

A variable is a location where a program can
store information for later use.

Each variable has three pieces of information
associated with it:
● Name: What is the variable called?
● Type: What sorts of things can you store in the

variable?
● Value: What value does the variable have at any

particular moment in time?

137 int numVoters

Variable Names

● Legal names for variables
● begin with a letter or an underscore (_)
● consist of letters, numbers, and underscores,

and
● aren't one of Java's reserved words.

x w
7thBookInTheSeries LOUD_AND_PROUD
Harry Potter that'sACoolName
noOrdinaryRabbit void
lots_of_underscores C_19_H_14_O_5_S

Variable Names

● Legal names for variables
● begin with a letter or an underscore (_)
● consist of letters, numbers, and underscores,

and
● aren't one of Java's reserved words.

x w
7thBookInTheSeries LOUD_AND_PROUD
Harry Potter that'sACoolName
noOrdinaryRabbit void
lots_of_underscores C_19_H_14_O_5_S

Variable Names

● Legal names for variables
● begin with a letter or an underscore (_)
● consist of letters, numbers, and underscores,

and
● aren't one of Java's reserved words.

x w
7thBookInTheSeries LOUD_AND_PROUD
Harry Potter that'sACoolName
noOrdinaryRabbit void
lots_of_underscores C_19_H_14_O_5_S

Variable Names

● Legal names for variables
● begin with a letter or an underscore (_)
● consist of letters, numbers, and underscores,

and
● aren't one of Java's reserved words.

x w
7thBookInTheSeries LOUD_AND_PROUD
Harry Potter that'sACoolName
noOrdinaryRabbit void
lots_of_underscores C_19_H_14_O_5_S

Variable Names

● Legal names for variables
● begin with a letter or an underscore (_)
● consist of letters, numbers, and underscores,

and
● aren't one of Java's reserved words.

x w
7thBookInTheSeries LOUD_AND_PROUD
Harry Potter that'sACoolName
noOrdinaryRabbit void
lots_of_underscores C_19_H_14_O_5_S

Variable Names

● Legal names for variables
● begin with a letter or an underscore (_)
● consist of letters, numbers, and underscores,

and
● aren't one of Java's reserved words.

x w
7thBookInTheSeries LOUD_AND_PROUD
Harry Potter that'sACoolName
noOrdinaryRabbit void
lots_of_underscores C_19_H_14_O_5_S

Variable Names

● Legal names for variables
● begin with a letter or an underscore (_)
● consist of letters, numbers, and underscores,

and
● aren't one of Java's reserved words.

x w
7thBookInTheSeries LOUD_AND_PROUD
Harry Potter that'sACoolName
noOrdinaryRabbit void
lots_of_underscores C_19_H_14_O_5_S

Variable Names

● Legal names for variables
● begin with a letter or an underscore (_)
● consist of letters, numbers, and underscores,

and
● aren't one of Java's reserved words.

x w
LOUD_AND_PROUD

noOrdinaryRabbit
lots_of_underscores C_19_H_14_O_5_S

Variable Naming Conventions

● You are free to name variables as you see fit, but there
are some standard conventions.

● Names are often written in lower camel case:

capitalizeAllWordsButTheFirst

Choose names that describe what the variable does.

If it's a number of votes, call it numberOfVotes,
numVotes, votes, etc.

Don't call it x, volumeControl, or severusSnape

Variable Naming Conventions

● You are free to name variables as you see fit, but there
are some standard conventions.

● Names are often written in lower camel case:

capitalizeAllWordsButTheFirst

Choose names that describe what the variable does.

If it's a number of votes, call it numberOfVotes,
numVotes, votes, etc.

Don't call it x, volumeControl, or severusSnape

Variable Naming Conventions

● You are free to name variables as you see fit, but there
are some standard conventions.

● Names are often written in lower camel case:

capitalizeAllWordsButTheFirst

Choose names that describe what the variable does.

If it's a number of votes, call it numberOfVotes,
numVotes, votes, etc.

Don't call it x, volumeControl, or severusSnape

Variable Naming Conventions

● You are free to name variables as you see fit, but there
are some standard conventions.

● Names are often written in lower camel case:

capitalizeAllWordsButTheFirst
● Choose names that describe what the variable does.

● If it's a number of voters, call it numberOfVoters,
numVoters, voters, etc.

● Don't call it x, volumeControl, or severusSnape.

Types

● The type of a variable determines what
can be stored in it.

● Java has several primitive types that it
knows how to understand:
● int: Integers.

● double: Real numbers.

● boolean: Logical true and false.
● (Plus a few more)

Types

● The type of a variable determines what
can be stored in it.

● Java has several primitive types that it
knows how to understand:
● int: Integers.
● double: Real numbers.
● boolean: Logical true and false.
● (Plus a few more)

Types

● The type of a variable determines what
can be stored in it.

● Java has several primitive types that it
knows how to understand:
● int: Integers.
● double: Real numbers.
● boolean: Logical true and false.
● (Plus a few more)

Types

● The type of a variable determines what
can be stored in it.

● Java has several primitive types that it
knows how to understand:
● int: Integers.
● double: Real numbers.
● boolean: Logical true and false.
● (Plus a few more)

Types

● The type of a variable determines what
can be stored in it.

● Java has several primitive types that it
knows how to understand:
● int: Integers. (counting)
● double: Real numbers.
● boolean: Logical true and false.
● (Plus a few more)

Types

● The type of a variable determines what
can be stored in it.

● Java has several primitive types that it
knows how to understand:
● int: Integers. (counting)
● double: Real numbers. (measuring)
● boolean: Logical true and false.
● (Plus a few more)

Types

● The type of a variable determines what
can be stored in it.

● Java has several primitive types that it
knows how to understand:
● int: Integers. (counting)
● double: Real numbers. (measuring)
● boolean: Logical true and false.
● (Plus a few more)

Values

137 int numVotes

0.97333 double fractionVoting

0.64110 double fractionYes

Declaring Variables

● In Java, before you can use a variable,
you need to declare it so that Java knows
the name, type, and value.

● The syntax for declaring a variable is

type name = value;
● For example:

● int numVotes = 137;
● double pricePerPound = 0.93;

import acm.program.*;

public class AddTwoIntegers extends ConsoleProgram {
public void run() {

println("This program adds two integers.");

// Read two values from the user.
int n1 = readInt("Enter first integer: ");
int n2 = readInt("Enter second integer: ");

// Compute their sum.
int sum = n1 + n2;

// Print out the summation
println("The sum of those numbers is " + sum);

}
}

import acm.program.*;

public class AddTwoIntegers extends ConsoleProgram {
public void run() {

println("This program adds two integers.");

// Read two values from the user.
int n1 = readInt("Enter first integer: ");
int n2 = readInt("Enter second integer: ");

// Compute their sum.
int sum = n1 + n2;

// Print out the summation
println("The sum of those numbers is " + sum);

}
}

Reading Values

● You can prompt the user for a value by
using the readInt and readDouble methods.

● For example:
int numBunnies = readInt("How many bunnies? ");

double weight = readDouble("Each bunny weighs? ");

● Notice that there's a space at the end of
each of the prompts – we'll see why in a
second.

import acm.program.*;

public class AddTwoIntegers extends ConsoleProgram {
public void run() {

println("This program adds two integers.");

// Read two values from the user.
int n1 = readInt("Enter first integer: ");
int n2 = readInt("Enter second integer: ");

// Compute their sum.
int sum = n1 + n2;

// Print out the summation
println("The sum of those numbers is " + sum);

}
}

import acm.program.*;

public class AddTwoIntegers extends ConsoleProgram {
public void run() {

println("This program adds two integers.");

// Read two values from the user.
int n1 = readInt("Enter first integer: ");
int n2 = readInt("Enter second integer: ");

// Compute their sum.
int sum = n1 + n2;

// Print out the summation
println("The sum of those numbers is " + sum);

}
}

Expressions

● Variables and other values can be used in
expressions.

● Some familiar mathematical operators:
● + (addition)

● – (subtraction)

● * (multiplication)

● / (division)

Operator Precedence

● Java's mathematical operators have the
following precedence:

 () (highest)

 * /

 + - (lowest)

● Operators of equal precedence are
evaluated left-to-right.

Fun with Division

The Mod Operator

● The special operator % (called the modulus
operator or mod operator) computes the
remainder of one value divided by another.

● a % b is pronouned “a mod b.”

● For example:
● 15 % 3 = 0
● 14 % 8 = 6
● 21 % 2 = 1
● 14 % 17 = 14

Rounding Down

● In Java, dividing two ints will divide and then
round down.

● For example, this will print 3:

 int value = 7 / 2;

 println("The value is " + value);

● This might be a bit weird, but there's a good
reason for it.

Sharing Cookies

She got more
than me!

Cookies for everyone!

Dividing Doubles

● In Java, dividing two ints will divide and then
round down.

● Dividing two doubles will do the division
correctly.

● If either operand is a double, the division will be
done correctly.

● For example, to compute the average of two
ints n1 and n2, you could write

double average = (n1 + n2) / 2.0;

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

