
  

Starting Off in Java



  

Announcements

● Programming Assignment 1 is due this Friday.
● Recommendation: Try to complete a first draft of all 

four programs by this Wednesday so that you have time 
to debug and test them at the end of the week.

● Section signups closed yesterday at 5PM; section 
assignments will be announced soon.
● Missed section signups? Section signups will reopen on 

Tuesday afternoon, though with more limited options.

● LaIR hours start tonight! Open 6PM – midnight 
from Sunday through Thursday.
● Located on the second floor of Tresidder.



  

Outline for Today

● Programming in Java
● What does Java look like outside of Karel?

● Variables, Types, and Values
● Storing information for later.

● Expressions
● Mathematical operations in Java.

● Graphics
● Oooh! Shiny!



  

A Farewell to Karel



  

Welcome to Java!



  

What is Java?

● Java is an industrial programming 
language used to build large 
applications.

● Used in web servers, Android phones, 
desktop applications, etc.

● Extremely common; easily one of the 
most popular programming languages in 
use today.



  

Transitioning to Java

● The Karel code that you've written so far 
is perfectly legal Java code.

● However, there are many key aspects of 
the Java programming language we 
haven't yet touched on.

● The remainder of this class will focus on 
those more general Java features and 
how to make the most use of them.



  

Our First Java Program



  

Dissecting our Program



  

import acm.program.*;

public class AddTwoIntegers extends ConsoleProgram {
public void run() {

println("This program adds two integers.");

// Read two values from the user.
int n1 = readInt("Enter first integer: ");
int n2 = readInt("Enter second integer: ");

// Compute their sum.
int sum = n1 + n2;

// Print out the summation
println("The sum of those numbers is " + sum);

}
}
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Working with Variables

● The previous program declared three 
variables: n1, n2, and sum.

● In the previous example, we used these 
variables to keep track of values that the 
user entered and to store information for 
later on.

● Variables are very important in Java, so 
we'll start with a quick overview of how to 
use them.



  

Variables

● A variable is a location where a program can 
store information for later use.

● Each variable has three pieces of information 
associated with it:
● Name: What is the variable called?
● Type: What sorts of things can you store in the 

variable?
● Value: What value does the variable have at any 

particular moment in time?
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Variables

● A variable is a location where a program can 
store information for later use.

● Each variable has three pieces of information 
associated with it:
● Name: What is the variable called?
● Type: What sorts of things can you store in the 

variable?
● Value: What value does the variable have at any 

particular moment in time?

137 int numVoters



  

Variables

A variable is a location where a program can 
store information for later use.

Each variable has three pieces of information 
associated with it:
● Name: What is the variable called?
● Type: What sorts of things can you store in the 

variable?
● Value: What value does the variable have at any 

particular moment in time?

137 int numVoters



  

Variable Names

● Legal names for variables
● begin with a letter or an underscore (_)
● consist of letters, numbers, and underscores, 

and
● aren't one of Java's reserved words.

x w
7thBookInTheSeries LOUD_AND_PROUD
Harry Potter that'sACoolName
noOrdinaryRabbit void
lots_of_underscores C_19_H_14_O_5_S
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Variable Names

● Legal names for variables
● begin with a letter or an underscore (_)
● consist of letters, numbers, and underscores, 

and
● aren't one of Java's reserved words.

x w
LOUD_AND_PROUD

 
noOrdinaryRabbit  
lots_of_underscores C_19_H_14_O_5_S



  

Variable Naming Conventions

● You are free to name variables as you see fit, but there 
are some standard conventions.

● Names are often written in lower camel case:

capitalizeAllWordsButTheFirst    

Choose names that describe what the variable does.

If it's a number of votes, call it numberOfVotes, 
numVotes, votes, etc.

Don't call it x, volumeControl, or severusSnape
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Types

● The type of a variable determines what 
can be stored in it.

● Java has several primitive types that it 
knows how to understand:
● int: Integers.

● double: Real numbers.

● boolean: Logical true and false.
● (Plus a few more)
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Types
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Values

137 int numVotes

0.97333 double fractionVoting

0.64110 double fractionYes



  

Declaring Variables

● In Java, before you can use a variable, 
you need to declare it so that Java knows 
the name, type, and value.

● The syntax for declaring a variable is

type name = value; 
● For example:

● int numVotes = 137;
● double pricePerPound = 0.93;



  

import acm.program.*;

public class AddTwoIntegers extends ConsoleProgram {
public void run() {

println("This program adds two integers.");

// Read two values from the user.
int n1 = readInt("Enter first integer: ");
int n2 = readInt("Enter second integer: ");

// Compute their sum.
int sum = n1 + n2;

// Print out the summation
println("The sum of those numbers is " + sum);

}
}
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Reading Values

● You can prompt the user for a value by 
using the readInt and readDouble methods.

● For example:
int numBunnies = readInt("How many bunnies? "); 

double weight = readDouble("Each bunny weighs? ");

● Notice that there's a space at the end of 
each of the prompts – we'll see why in a 
second.
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Expressions

● Variables and other values can be used in 
expressions.

● Some familiar mathematical operators:
● + (addition)

● – (subtraction)

● * (multiplication)

● / (division)



Operator Precedence

● Java's mathematical operators have the 
following precedence:

    () (highest)

    * /

    + - (lowest)

● Operators of equal precedence are 
evaluated left-to-right.



Fun with Division



The Mod Operator

● The special operator % (called the modulus 
operator or mod operator) computes the 
remainder of one value divided by another.

● a % b is pronouned “a mod b.”

● For example:
● 15 %  3 =  0
● 14 %  8 =  6
● 21 %  2 =  1
● 14 % 17 = 14



Rounding Down

● In Java, dividing two ints will divide and then 
round down.

● For example, this will print 3:

 int value = 7 / 2; 

 println("The value is " + value);

● This might be a bit weird, but there's a good 
reason for it.



Sharing Cookies



She got more
than me!





Cookies for everyone!



Dividing Doubles

● In Java, dividing two ints will divide and then 
round down.

● Dividing two doubles will do the division 
correctly.

● If either operand is a double, the division will be 
done correctly.

● For example, to compute the average of two 
ints n1 and n2, you could write

double average = (n1 + n2) / 2.0;
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