
  

Classes



  

Objects and Primitives

● Our programs have worked with two types of 
data: primitives and objects.

● Primitives are data types like int, double, char, 
and boolean.
● They're built into Java – you can't define your own 

primitive types.

● Objects are types like ArrayList, String, 
GPoint, and RandomGenerator.
● Where do these types come from?



Objects Revisited

● GRect state:

● Position
● Size
● Color
● Is filled?
● etc.

● GRect behavior:

● Move
● Change color
● Change fill state
● Report position
● etc.

● An object is a combination of
● State – persistent information, and
● Behavior – the ability to operate on that 

state.



Objects Revisited

● GPoint state:

● Position

● GPoint behavior:

● Move
● Move by angle
● Report x coordinate
● Report y coordinate

● An object is a combination of
● State – persistent information, and
● Behavior – the ability to operate on that 

state.



Objects Revisited

● String state:

● Character sequence

● String behavior:

● Get characters
● Produce substring
● etc.

● An object is a combination of
● State – persistent information, and
● Behavior – the ability to operate on that 

state.



Classes and Objects

● Every object is an instance of a class.
● The class determines

● what state each instance maintains.
● what behaviors each instance possesses.

● Each instance determines
● the specific values for that state information.



  

Has a fur color.
Has an energy level.

Has a level of cuteness.
Can be your friend.

Can sit.
Can stay.
Can bark.

class Dog



Creating a Class



Creating our own Class

Image credit: http://store.controlconceptsusa.com/media/products/MC-Tally.jpg



Creating our own Class

● State:
● The current 

number.

● Behavior:
● Read the counter.
● Increment the 

counter.

We use instance 
variables to keep 
track of state.

We use instance 
variables to keep 
track of state.



Creating our own Class

● State:
● The current 

number.

● Behavior:
● Read the counter.
● Increment the 

counter.

We use instance 
variables to keep 
track of state.

We use instance 
variables to keep 
track of state.

We use methods to 
specify behavior.

We use methods to 
specify behavior.



Creating Objects

● Each object is an instance of a class.
● You can create an object that's an 

instance of a given type by writing

new Type(args)  
● This is sometimes called instantiating 

the class.



Instance Variables Revisited

● Each instance of a class gets its own, unique copy 
of each instance variable.

● Each object's instance variables persist as long as 
the object exists.

● Different instances of the same object cannot read 
or write each others' instance variables.



public and private

● A method or instance variable declared public can be 
accessed from anywhere.

● A method or instance variable declared private can 
only be accessed by an instance of the class in the body 
of a method.



public and private

● A method or instance variable declared public can be 
accessed from anywhere.

● A method or instance variable declared private can 
only be accessed by an instance of the class in the body 
of a method.

Private
State

Public Interface



Why Hide Information?

● Making instance variables private and 
mediating access through public methods has 
many advantages.

● Separates what you can do from how it's done:
● We never talked about how GOval or HashMap 

actually work, but you can still use them.
● Prevents meaningless operations:

● A counter may be implemented using an int, but 
it's not actually an int and not all operations on 
int make sense on a counter (or vice-versa).



Time-Out for Announcements!



  

Assignment 7

● Assignment 6 (Array Algorithms) due at 
3:15PM today.

● Midterm regrades will be completed by 
Monday.

● Assignment 7 (NameSurfer) goes out today 
and is due Monday, March 9 at 3:15PM.
● Play around with graphics, interactors, HashMaps, 

and classes!
● See historical trends play out in baby name 

popularities!



  

Casual CS Dinner

● WiCS is holding their second Casual CS 
Dinner of the quarter next Wednesday at 
6PM.

● Location info and RSVP link available in 
the email sent out yesterday.



  

Midterm Logistics

● Second midterm is next Tuesday from 7PM – 10PM.
● Same locations as last time – just go where you 

went before!
● Abb  - Jon:  Go to Hewlett 200
● Jun  - Mari: Go to Hewlett 201
● Marq - Mik:  Go to Hewlett 101
● Mil  - Ogr:  Go to Hewlett 102
● Oke  - Pat:  Go to Hewlett 103
● Pau  - Tan:  Go to Braun Auditorium
● Tao  - Zuc:  Go to 320-105

● Good luck!



  

Back to CS106A!



Modifying our Class



Constructors

● A constructor is a special method defined in a class that 
is responsible for setting up class's instance variables to 
appropriate values.

● Syntax:

        public NameOfClass(arguments) {

              /* … body of constructor … */

        }                                    

● Inside a constructor:
● Give initial values to instance variables.
● Set up instance variables based on values specified in the 

parameters.

● Constructor called when instance created with new.



toString()

● To get a string representation of an 
object, Java uses a method

public String toString()

● If you define this method in your Java 
classes, you can customize what string 
will be produced.

● Otherwise, you get Icky Javaspeak string 
representations.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

