
Eric Roberts Handout #10
CS 106A January 8, 2016

An Example of Stepwise Refinement

“sweet spring is your
time is my time is our
time for springtime is lovetime
and viva sweet love”

—e. e. cummings

For those who are not fortunate enough to live in California, winter maintains a solid hold
on the world. The trees have lost their leaves and stand as empty monuments to the
ravages of the season. And, even here, the recent rain has us longing for spring.

In this sample world, the vertical wall sections represent barren tree trunks. In an attempt
to add some semblance of life back to the world, Karel has taken on the mission of
adorning the barren trees with a new set of leaves represented by beepers. Karel’s plan is
to climb each of the trees and adorn the top of each tree with a cluster of four leaves
arranged in a square like this:

Thus, when Karel is done, the scene will look like this:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

 – 2 –

As in most Karel problems, the situation that Karel faces need not match exactly the one
shown in the diagram. There may be more trees; Karel simply continues the process until
there are no beepers left in the beeper bag. The trees may also be of different heights or
spaced differently than the ones shown in the diagram. Your task is to design a program
that is general enough to solve any such problem, subject to the following assumptions:

• Karel starts at the origin facing east, somewhere west of the first tree.
• The trees are always separated by at least two corners, so that the leaves at the top

don’t interfere with one another.
• The trees always end at least two corners below the top, so that the leaf cluster will not

run into the top wall.
• Karel has just enough beepers to outfit all the trees. The original number of beepers

must therefore be four times the number of trees.
• Karel should finish facing east at the bottom of the last tree.

Think hard about what the parts of this program are and how you could break it down
into simpler subproblems. What if there were only one tree? How does that simplify the
problem, and how can you use the one-tree solution to help solve the more general case?

The solutions will be available on the web as Handout #10A.

– 3 –

Stepwise Refinement

Eric Roberts
CS 106A

January 8, 2016

Outline

Review Karel statement forms 1.

Exercise: The putBeeperLine method 2.

Stepwise refinement 3.

Exercise: The BanishWinter program 4.

Preconditions and postconditions 5.

Story time: Past Karel Contest winners 6.

Review: The Karel Language Review: The Karel Language

Exercise: Creating a Beeper Line
•� Write a method putBeeperLine that adds one beeper to every

intersection up to the next wall.

•� Your method should operate correctly no matter how far
Karel is from the wall or what direction Karel is facing.

•� Consider, for example, the following main program:

public void run() {
 putBeeperLine();
 turnLeft();
 putBeeperLine();
}

1 2 3 4 5

1

2

3

Stepwise Refinement
•� The most effective way to solve a complex problem is to

break it down into successively simpler subproblems.

•� You start by breaking the whole task down into simpler parts.

•� Some of those tasks may themselves need subdivision.

•� This process is called stepwise refinement or decomposition.

– 4 –

Criteria for Choosing a Decomposition

The proposed steps should be easy to explain. One
indication that you have succeeded is being able to find
simple names.

1.

The steps should be as general as possible. Programming
tools get reused all the time. If your methods perform
general tasks, they are much easier to reuse.

2.

The steps should make sense at the level of abstraction at
which they are used. If you have a method that does the
right job but whose name doesn’t make sense in the context
of the problem, it is probably worth defining a new method
that calls the old one.

3.

Exercise: Banishing Winter
•� In this problem (which is described in detail in Handout #11),

Karel is supposed to usher in springtime by placing bundles
of leaves at the top of each “tree” in the world.

•� Given this initial world, the final state should look like this:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

6

5

4

3

2

1

Understanding the Problem
•� One of the first things you need to do given a problem of this

sort is to make sure you understand all the details.

•� According to the handout, Karel stops when it runs out of
beepers. Why couldn’t it just stop at the end of 1st Street?

1 2 3 4 5 6 7 8 9 10 11 12 13 14

6

5

4

3

2

1

The Top-Level Decomposition
•� You can break this program down into two tasks that are

executed repeatedly:

–� Find the next tree.

–� Decorate that tree with leaves.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

6

5

4

3

2

1

Preconditions and Postconditions
•� Many of the bugs that you are likely to have come from being

careless about the conditions under which you use a particular
method.

•� As an example, it would be easy to forget the turnLeft call
at the end of the addLeavesToTree method.

•� To reduce the likelihood of such errors, it is useful to define
pre- and postconditions for every method you write.

–� A precondition specifies something that must be true before a
method is called.

–� A postcondition specifies something that must be true after the
method call returns.

