
Alisha Adam and Rohit Talreja
CS 106A – Summer 2016

Practice Final #2

Final Exam Time: Friday, August 12th, 12:15pm - 3:15pm
Final Exam Location: Split by last name

 Last name starting with A – P NVIDIA Auditorium
Last name starting with Q – Z Skilling Auditorium

Based on a past version of this handout by Marty Stepp and Keith Schwarz

This handout is intended to give you practice solving problems that are comparable in format and
difficulty to those which will appear on the final exam.

Final Exam is open book, closed notes, closed computer
The examination is open-book (specifically the course textbook The Art and Science of Java).
You may not use any handouts, course notes/slides, printouts of your programs or other notes
you've taken in the class. You may not use a computer or electronic device of any kind.

Coverage
The final exam covers the material presented throughout the class (with the exception of the
Karel material), which means that you are responsible for Chapters 1 through 13 of the class
textbook The Art and Science of Java.

General instructions
Answer each of the questions included in the exam. Write all of your answers directly on the
examination paper, including any work that you wish to be considered for partial credit.

Each question is marked with the number of points assigned to that problem. The total number of
points is 180. We intend for the number of points to be roughly comparable to the number of
minutes you should spend on that problem.

In all questions, you may include methods or definitions that have been developed in the course,
either by writing the import line for the appropriate package or by giving the name of the
method and the textbook chapter number in which that definition appears.

Unless otherwise indicated as part of the instructions for a specific problem, comments will not
be required on the exam. Uncommented code that gets the job done will be sufficient for full
credit on the problem. On the other hand, comments may help you to get partial credit if they
help us determine what you were trying to do.

Blank pages for solutions omitted in practice exam (but will be available on real exam)
In an effort to save trees, the blank pages that would be provided in a regular exam for writing
your solutions have been omitted from this practice exam.

2 of 9

Problem 1: Value/Reference Semantics Trace (15 points)

The following program produces 4 lines of output. Write the output below, as it would appear on
the console.

public	class	ReferenceMystery1	extends	ConsoleProgram	{	
				public	void	run()	{	
								int	y	=	1;	
								int	x	=	3;	
								int[]	a	=	new	int[4];	
	
								mystery(a,	y,	x);	
								println(x	+	"	"	+	y	+	"	"	+	Arrays.toString(a));	
	
								x	=	y	-	1;	
								mystery(a,	y,	x);	
								println(x	+	"	"	+	y	+	"	"	+	Arrays.toString(a));	
				}	
	
				public	void	mystery(int[]	a,	int	x,	int	y)	{	
								if	(x	<	y)	{	
												x++;	
												a[x]	=	17;	
								}	else	{	
												a[y]	=	17;	
								}	
								println(x	+	"	"	+	y	+	"	"	+	Arrays.toString(a));	
				}	
}	
	

3 of 9

Problem 2: Multi-dimensional Arrays Trace (15 points)
Consider the following method. For each multi-dimensional array listed below, write the final
array state that would result if the given array were passed as a parameter to the method.

public	void	array2dMystery3(int[][]	a)	{	
				for	(int	r	=	0;	r	<	a.length	-	1;	r++)	{	
								for	(int	c	=	0;	c	<	a[0].length	-	1;	c++)	{	
												if	(a[r][c	+	1]	>	a[r][c])	{	
																a[r][c]	=	a[r][c	+	1];	
												}	else	if	(a[r	+	1][c]	>	a[r][c])	{	
																a[r][c]	=	a[r	+	1][c];	
												}	
								}	
				}	
}	
	
	
Method Call Final Array State

a)

int[][]	a1	=	{

				{3,	4,	5,	6},

				{4,	2,	6,	1},

				{1,	6,	7,	2}

};

array2dMystery3(a1);

	
	
	
	
	
	
	
b)
int[][]	a2	=	{

				{1,	2,	3,	0,	5},

				{2,	4,	6,	8,	10},

				{9,	5,	1,	2,	4}

};

array2dMystery3(a2);

4 of 9

Problem 3: Collections Trace (15 points)

Write the output produced when the following method is passed each of the following maps. It
does not matter what order the key/value pairs appear in your answer, so long as you have the
right overall set of key/value pairs.

public	void	collectionMystery1(HashMap<String,	String>	map)	{	
				HashMap<String,	String>	result	=	new	HashMap<String,	String>();	
				for	(String	k	:	map.keySet())	{	
								String	v	=	map.get(k);	
								if	(k.charAt(0)	<=	v.charAt(0))	{	
												result.put(k,	v);	
								}	else	{	
												result.put(v,	k);	
								}	
				}	
				println(result);	
}	
	
	

 Map Output
a) {two=deux,	five=cinq,	one=un,	
				three=trois,	four=quatre}	
	
b) {skate=board,	drive=car,				
				program=computer,	computer=awesome}	
	
c) {siskel=ebert,	girl=boy,	heads=tails,	
				ready=begin,	first=last}	

5 of 9

Problem 4: ConsoleProgram (30 points)

Suppose you want to hold a never-ending birthday party, where every day of the year someone at
the party has a birthday. How many people do you need to get together to have such a party?

Your task in this program is to write a method neverEndingBirthdayParty that simulates
building a group of people one person at a time. Each person is presumed to have a birthday that
is randomly chosen from all possible birthdays. Once it becomes the case that each day of the
year, someone in your group has a birthday, your program should return the number of people in
the group and exit.
In writing your solution, you should assume the following:

• There are 366 possible birthdays (this includes February 29).

• All birthdays are equally likely, including February 29.
You might find it useful to represent birthdays as integers between 0 and 365, inclusive.

6 of 9

Problem 5: Arrays (20 points)

Write a method named longestSortedSequence that accepts an array of integers as a parameter
and that returns the length of the longest sorted (non-decreasing) sequence of integers in the array.
For example, if a variable named array stores the following values:

int[]	array1	=	{3,	8,	10,	1,	9,	14,	-3,	0,	14,	207,	56,	98,	12};	

Then the call of longestSortedSequence(array1) should return 4 because the longest sorted
sequence in the array has four values in it (the sequence -3, 0, 14, 207). Notice that sorted means
non-decreasing, which means that the sequence could contain duplicates. For example, if the
array stores the following values:

int[]	array2	=	{17,	42,	3,	5,	5,	5,	8,	2,	4,	6,	1,	19};	

Then the method would return 5 for the length of the longest sequence (the sequence 3, 5, 5, 5, 8).
Your method should return 0 if passed an empty array. Your method should return 1 if passed an
array that is entirely in decreasing order or contains only one element.
Constraints: You may not use any auxiliary data structures (arrays, lists, strings, etc.) to solve
this problem. Your method should not modify the array that is passed in.

7 of 9

Problem 6: Classes and Objects (25 points)
Suppose that you are provided with a pre-written
class BankAccount as described at right. (The
headings are shown, but not the method bodies, to
save space.) Assume that the fields, constructor,
and methods shown are already implemented. You
may refer to them or use them in solving this
problem if necessary.
Write a method named transactionFee that will
be placed inside the BankAccount class to become
a part of each BankAccount object's behavior. The
transactionFee method accepts a fee amount (a
real number) as a parameter, and applies that fee to
the user's past transactions. The fee is applied once
for the first transaction, twice for the second
transaction, three times for the third, and so on.
These fees are subtracted out from the user's overall
balance. If the user's balance is large enough to
afford all of the fees with greater than $0.00
remaining, the method returns true. If the balance
cannot afford all of the fees, the balance is left as
0.0 and the method returns false.
For example, given the following BankAccount
object:

BankAccount	savings	=		
				new	BankAccount("Jimmy");	
savings.deposit(10.00);	
savings.deposit(50.00);	
savings.deposit(10.00);	
savings.deposit(70.00);	

The account at that point has a balance of $140.00.
If the following call were made:

savings.transactionFee(5.00)	

Then the account would be deducted $5 + $10 +
$15 + $20 for the four transactions, leaving a final
balance of $90.00. The method would return true.
If a second call were made,

savings.transactionFee(10.00)	

Then the account would be deducted $10 + $20 +
$30 + $40 for the four transactions, leaving a final
balance of $0.00. The method would return false.

	
	
	
//	A	BankAccount	keeps	track	of	a		
//	user's	money	balance	and	ID,	
//	and	counts	how	many	transactions	
//	(deposits/withdrawals)	are	made.	
	
public	class	BankAccount	{	
				private	String	id;	
				private	double	balance;	
				private	int	transactions;	
	
				//	Constructs	a	BankAccount	
				//	object	with	the	given	id,	and	
				//	0	balance	and	transactions.	
				public	BankAccount(String	id)	
	
				//	returns	the	field	values	
				public	double	getBalance()	
				public	String	getID()	
	
				//	Adds	the	amount	to	the	balance	
				//	if	it	is	between	0-500.	
				//	Also	counts	as	1	transaction.	
				public	void	deposit(double	amount)	
					
				//	Subtracts	the	amount	from	
				//	the	balance	if	the	user	has	
				//	enough	money.	
				//	Also	counts	as	1	transaction.	
				public	void	withdraw(double	amount)	
	
	
				//	your	method	would	go	here	
	
}	

8 of 9

Problem 7: Collections (30 points)

Write a method named isSubMap that accepts two hash maps from strings to strings as its
parameters and returns true if every key in the first map is also contained in the second map and
maps to the same value in the second map. For example, {Smith=949–0504,	Marty=206–9024}
is a sub-map of {Marty=206–9024,	Hawking=123–4567,	Smith=949–0504,	Newton=123–
4567}. The empty map is considered to be a sub-map of every map.

Constraints: You may not declare any auxiliary data structures in solving this problem.

9 of 9

Problem 8: Graphical User Interfaces (30 points)

Write a complete program named SignMaker that implements a graphical user interface for
creating simple signs, each of which consists of lines of centered text displayed in different fonts.
When you start the program, the user interface looks like the screenshot below. In its bottom
region it contains a 30-character-wide text field labeled "Line:" and a 15-character-wide text field
labeled "Font:". The initial text of the "Line" field is blank, and the initial text of the "Font" Field
is "Times-Bold-36".

You can then add a line to the display by entering text into the Line field and pressing Enter, as
shown in the screenshots below. That label should be centered in the window and set in the font
specified in the 15-character-wide Font text field. The first label you add should be positioned so
that its text is at the very top of the window. The first line shown is set in Times-Bold-36 and
appears very close to the top of the window. Pressing ENTER also clears the text field in the
control strip making it easier for the user to enter the next line of the sign.

The user can change the font of each subsequently added line by typing a new font name in the
Font field. For example, if the user wanted to add a second line to the message is a smaller, italic
font, that user could do so by changing the contents of the Font field to Times-Italic-24 and then
typing in a new message. Typing Enter at this point would add a new centered label below the
first one. The distance to the next baseline from the previous one should be the height of the new
label you're adding. The screenshots below show the window state before and after adding a
second label.

You may assume that the user types valid font strings into the Font field.

