
Alisha	Adam	&	Rohit	Talreja	

CS	106A	–	Summer	2016	

	

Practice	Midterm	#2	
	 	 	 	 	 	 	 	 	 	 	 	 	 .	

	

Midterm	Time:	Monday,	July	18th,	7pm	–	9pm	
Midterm	Location:	Hewlett	200	

	 	 	 	 	 	 	 	 	 	 	 	 	 .	

Based	on	previous	handouts	by	Keith	Schwarz,	Eric	Roberts,	Marty	Stepp,	and	others	

	

This handout is intended to give you practice solving problems that are comparable in format and
difficulty to those which will appear on the midterm examination.

Exam is open book, closed notes, closed computer
The examination is open-book (specifically the course textbook The Art and Science of Java and
the Karel the Robot coursereader). You may not use any handouts, course notes/slides, printouts
of your programs or other notes you've taken in the class. You may not use a computer or
electronic device of any kind.

Coverage
The midterm exam covers the material presented in class through Thursday, July 14th.

General instructions
Answer each of the questions included in the exam. Write all of your answers directly on the
examination paper, including any work that you wish to be considered for partial credit.
Each question is marked with the number of points assigned to that problem. The total number of
points is 120. We intend for the number of points to be roughly comparable to the number of
minutes you should spend on that problem.
In all questions, you may include methods or definitions that have been developed in the course,
either by writing the import line for the appropriate package or by giving the name of the method
and the chapter number from the textbook in which that definition appears.
Unless otherwise indicated as part of the instructions for a specific problem, comments will not
be required on the exam. Uncommented code that gets the job done will be sufficient for full
credit on the problem. On the other hand, comments may help you to get partial credit if they
help us determine what you were trying to do.

2 / 15

Problem 1: RectangleKarel (10 Points)

In this problem, you will write a program to get Karel to fill a rectangular region of Karel's world with
beepers. The rectangle's upper-left corner is given by Karel's initial position, and the rectangle's lower-
right corner should be the lower-right corner of the world. For example:

Initial World Result

In implementing your solution, you can assume the following:

• Karel always begins facing East, but otherwise Karel's initial position is unspecified.

• Karel's world has arbitrary size, no beepers, and no internal walls.

• Karel's beeper bag has infinitely many beepers in it.

• Karel's final position and orientation are irrelevant.

You are limited to the instructions in the Karel booklet. For example, the only variables allowed are
loop control variables used within the control section of a for loop (where the loop upper bound is a
fixed number), you must not use the break or return statements, etc. You may, however, use the &&, ||,
and ! operators in the conditions of if statements and while loops. Write your solution on the next
page, and feel free to tear out this page as a reference.

25 points

3 / 15

import stanford.karel.*;

public class RectangleKarel extends SuperKarel {

 public void run() {

4 / 15

(Extra space for Problem One, if you need it)

5 / 15

Problem Two: Jumbled Java hiJinks (10 Points Total)

(i) Solve for x (6 Points)

For each of these programs, determine whether there are any values of x that can be entered so that the
program will print success without causing any errors and without printing anything else. If there are
multiples values of x that will work, just give one of them. If there are no values of x that will work,
write “no solution.” No justification is necessary.

/* Program A */
int x = readInt();
if (x != 0 && x / 2 == 0) {
 println("success");
} Answer for Program A:

/* Program B */
int x = readInt();
if (x >= 10000) {
 while (x != 0) {
 if (x % 10 != 9) {
 println("failure");
 }
 x /= 10;
 }
 println("success");
}

 Answer for Program B:

/* Program C */
int x = readInt();
if (x > 7 && x / 0 == x) {
 println("success");
} Answer for Program C:

/* Program D */
int x = readInt();
if (x != 0 || x != 1) {
 println("failure");
}
println("success"); Answer for Program D:

/* Program E */
int x = readInt();
if (1 – 3 – 5 – x == -10) {
 println("success");
} Answer for Program E:

/* Program F */
int x = readInt();
if (x / 2 * 3 == 6) {
 println("success");
} Answer for Program F:

20 points total

10 points

6 / 15

(ii) Program Tracing (4 Points)

Determine the output of the following program and write it in the indicated box.

import acm.program.*;

public class FrozenJava extends ConsoleProgram {

public void run() {

int anna = 16;

int elsa = 18;

anna = arendelle(anna, elsa);

println("anna = " + anna);

println("elsa = " + elsa);

}

private int arendelle(int elsa, int anna) {

String kristoff = "hans";

weselton(kristoff);

println("kristoff = " + kristoff);

elsa = kristoff.length();

return anna;

}

private void weselton(String olaf) {

olaf += "el";

println("olaf = " + olaf);

}

}

Write the output of the program in this box:

10 points

7 / 15

Problem Three: Slicing a Cake (10 Points)

Suppose that n people want to share a rectangular cake that's n inches long (that is, the cake's length is
equal to the number of people, in inches). Each person takes turns going up to the cake and cutting a
slice for herself. In a perfectly fair world, each person would cut a one-inch piece of cake so that every-

one would end up with the same amount of cake. We'll say
that a person is happy if she gets at least a one-inch slice of
cake. Unfortunately, people are greedy and won't always cut a
piece of the right size. Suppose that the cake gets sliced in the
following way. Each person, one after the other, goes up to the
cake to slice a piece. If there is at least 2” of cake left, the cur-
rent person randomly chooses an amount of cake between 1”
and 2” and cuts a piece of that size, ending up happy. If there
is between 1” and 2” of cake left, then the current person takes
whatever's left and is happy. Otherwise, there's less than 1”
left, and the current person takes what's left but isn't happy.

Your job in this problem is to write a program that estimates the average number of people who will
end up happy this way. On startup, your program should prompt the user for the number of people who
will split the cake. You should then run NUM_TRIALS simulations of slicing the cake according to the
above rules. (In the sample runs below, NUM_TRIALS is 10). After each simulation, your program should
print out how many total people end up happy (that is, with at least a 1” slice of cake). Once all the sim-
ulations finish, you should print out the average number of happy people across all the rounds.

Two sample runs of this program are shown below:

Write your answer on the next page, and feel free to tear out this page as a reference.

Cake!

n”

25 points

8 / 15

import acm.program.*;

import acm.util.*;

public class SlicingACake extends ConsoleProgram {

private static final int NUM_TRIALS = 10;

public void run() {

9 / 15

(extra space for Problem Three, if you need it)

10 / 15

Problem Four: Pebbling a Checkerboard (10 Points)

Suppose that you have a checkerboard of some size. You begin with three checkers in the lower-left
corner in an L-shape, as shown here:

In this game, each move consists of removing a checker from a square and replacing that checker with
two checkers – one directly above the original checker and one directly to the right of the original
checker. It is only legal to move a checker if both of these adjacent squares are unoccupied. For exam-

ple, in the diagram to the left, it's
legal to move checker B by replac-
ing it with the two checkers B₁
above it and B to its right, yielding₂
the given result. However, the other
checkers in the initial setup can't
move – checker A has a checker to
its right (namely, B) and checker C
has a checker above it (namely, B).
After moving checker B, the player
can either move checker A or move
checker C.

Your job is to write a program that lets the user play this game. Specifically, when your program begins,
you should draw three checkers in an L shape in the bottom-left corner of the screen. Whenever the user
clicks on a checker, if the squares directly above the checker and directly to the right of the checker are
free, then you should remove the checker that was clicked on and add two checkers, one directly above
it and one directly to the right. A sample run of the program is shown below:

User clicks this checker User clicks this checker

(Continued on next page)

BA

C

A

C

B₁

B₂

25 points

11 / 15

When implementing this program, you should adhere to the following:

• The checkers should be filled in solid black and have width and height given by the constant
CHECKER_SIZE.

• You do not need to (and, for the sake of time, shouldn't) actually draw the squares on the
checkerboard. You just need to show where the checkers are.

• You do not need to leave any “margins” between the checkers. The checkers can be flush up
against one another.

• The player never “wins” or “loses” this game; all you need to do is implement the logic to let
the user make moves.

• If the user clicks on a checker that cannot move, your program shouldn't move it. However, you
do not need to report an error or otherwise inform the user of why the checker can't move.

• If the user clicks on a checker that's at the very top or far right of the window, it's okay to let the
user move that checker, even though the resulting checkers will be off the screen.

As a reminder, you can use the getElementAt method to find which checker, if any, is at a particular
location on the screen. You may want to make multiple calls to getElementAt in order to determine
whether the user has clicked on a checker and whether there are any checkers above or to the right of
the selected checker.

import acm.program.*;

import acm.graphics.*;

import java.awt.*;

import java.awt.event.*;

public class PebblingACheckerboard extends GraphicsProgram {

 /* The size of a checker. */

 private static final double CHECKER_SIZE = 50;

12 / 15

(extra space for Problem Four, if you need it)

13 / 15

Problem Five: Damaged DNA Diagnoses (10 Points)

DNA molecules consist of two paired strands of nucleotides, molecules which encode genetic informa-
tion. Computational biologists typically represent each DNA strand as a string made from four different
letters – A, C, T, and G – each of which represents one of the four possible nucleotides.

The two paired strands in a DNA molecule are not arbitrary. In normal DNA, the two strands always
have the same length, and each nucleotide (letter) from one strand is paired with a corresponding nu-
cleotide (latter) from the second strand. In normal DNA strands, the letters are paired as follows:

A is paired with T and vice-versa.

C is paired with G and vice-versa.

Below are two matching DNA strands. Note how the letters are paired up according to the above rules:

GCATGGATTAATATGAGACGACTAATAGGATAGTTACAACCCTTACGTCACCGCCTTGA

↕↕↕

CGTACCTAATTATACTCTGCTGATTATCCTATCAATGTTGGGAATGCAGTGGCGGAACT

In some cases, errors occur within DNA molecules. This problem considers two types of DNA errors:

• Point mutations, in which a letter from one strand is matched against the wrong letter in the
other strand. For example, A might accidentally pair with C, or G might pair with G.

• Unmatched nucleotides, in which a letter from one strand is not matched with a letter from the
other. We represent this by pairing a letter from one strand with the – character in the other.

For example, consider these two DNA strands:

GGGA-GAATCTCTGGACT

CCCTACTTA-AGACCGGT

Here, there are two unmatched nucleotides (represented by one DNA strand containing a dash character
instead of a letter) and two point mutations (A paired with G and T paired with T).

Although both of these types of errors are problematic, we will consider point mutations to be a less
“costly” error than an unmatched nucleotide. Let's assign a point mutation (a letter matched with the
wrong letter) a cost of 1 and an unmatched nucleotide (a letter matched with a dash) a cost of 2.

Your job is to write a method

private int costOfDNAErrorsIn(String one, String two)

that accepts as input two strings representing DNA strands, then returns the total cost of all of the errors
in those two strands. You may assume the following:

• The two strings have the same length.

• Each string consists purely of the characters A, C, T, G, and – (the dash character). All letters
will be upper-case.

• A – character in one string is never paired with a – character in the other.

25 points

14 / 15

Here are some example inputs to the method, along with the expected result. For simplicity, all errors
have been highlighted in bold:

Strands Result

ACGT

TGCA

0
(No errors)

A-C-G-T-ACGT

TTGGCCAATGCA

8
(Four unmatched nucleotides)

AAAAAAAA

TTTATTTT

1
(One point mutation)

GATTACA

CTATT-T

3
(One point mutation, one unmatched nucleotide)

CAT-TAG-ACT

GTATATCCAAA

6
(Two point mutations, two unmatched nucleotides)

ACGTACGT

16
(Eight unmatched nucleotides)

TAATAA

ATTATT

0
(No errors)

GGGA-GAATATCTGGACT

CCCTACTTA-AGACCGGT

6
(Two point mutations, two unmatched nucleotides)

Feel free to tear this and the preceding page out as a reference, and write your implementation on the
next page.

15 / 15

private int costOfDNAErrorsIn(String one, String two) {

