
Alisha Adam & Rohit Talreja
CS 106A – Summer 2016

Section Handout #5 - Arrays
Based on handouts by Keith Schwarz and Marty Stepp

1. Index Of. Write a method named indexOf that returns the index of a particular value in an
array of integers. The method should return the index of the first occurrence of the target
value in the array. If the value is not in the array, it should return -1. For example, if an array
stores the following values:

int[] a = {42, 7, -9, 14, 8, 39, 42, 8, 19, 0};

Then the call indexOf(a, 8) should return 4 because the index of the first occurrence of
value 8 in the array is at index 4. The call indexOf(a, 2) should return -1 because value 2
is not in the array.

2. Unique Numbers. Write a method named numUnique that accepts an array of integers as
a parameter and returns the number of unique values in the array. The array is guaranteed to
be in sorted order, which means that duplicates will be grouped together. For example, if an
array stores the following values:

int[] list = {5, 7, 7, 7, 8, 22, 22, 23, 31, 35, 35, 40, 40, 40, 41}

then the call numUnique(list) should return 9 because this list has 9 unique values (5, 7, 8,
22, 23, 31, 35, 40, 41). It is possible that the list might not have any duplicates. If list instead
stored:

int[] list = {1, 2, 11, 17, 19, 20, 23, 24, 25, 26, 31, 34, 37, 40, 41}

then a call on the method would return 15 because this list contains 15 different values. If
passed an empty list, your method should return 0.

3. Banish. Write a method named banish that accepts two arrays of integers a1 and a2 as
parameters and removes all occurrences of a2's values from a1. An element is "removed" by
shifting all subsequent elements one index to the left to cover it up, placing a 0 into the last
index. The original relative ordering of a1's elements should be retained. For example,
suppose the following two arrays are declared and the following call is made:

int[] a1 = {42, 3, 9, 42, 42, 11, 42, 9, 42, 42, 17, 0, 8, 2222, 4, 9, 0, 1};
int[] a2 = {42, 2222, 9};
banish(a1, a2);

After the call has finished, the contents of a1 should become:

[3, 11, 17, 0, 8, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Notice that all occurrences of the values 42, 2222, and 9 have been removed and replaced by
0s at the end of the array, and the remaining values have shifted left to compensate.

4. Collapse. Write a method named collapse that accepts an array of integers as a
parameter and returns a new array containing the result of replacing each pair of integers with
the sum of that pair. For example, if an array called list stores the values {7, 2, 8, 9, 4,
13, 7, 1, 9, 10}, then the call of collapse(list); should return a new array containing
{9, 17, 17, 8, 19}. The first pair from the original list is collapsed into 9 (7 + 2), the
second pair is collapsed into 17 (8 + 9), and so on. If the list stores an odd number of
elements, the final element is not collapsed. For example, if the list had been {1, 2, 3, 4,
5}, then the call would return {3, 7, 5}. Your method should not change the array that is
passed as a parameter.

5. Find Median. Write a method named findMedian that is passed an array of integers
(representing exam scores) and returns the median of the scores. The median is defined as
the score for which half the scores are less than or equal to the median, and half are greater
than or equal to the median. You can assume the number of scores is odd. All scores range
from 0 to 50 (inclusive).

6. The Sieve of Eratosthenes. Write a program that uses the "Sieve of Eratosthenes" to print
a list of prime numbers between 2 and 1000. In the third century B.C., the Greek astronomer
Eratosthenes developed an algorithm for finding all the prime numbers up to some upper limit
N. To apply the algorithm, you start by writing down a list of the integers between 2 and N.
For example, if N is 10, you would write down the following list:

2 3 4 5 6 7 8 9 10

You then underline the first number in the list and cross off every multiple of that number.
Thus, after executing the first step of the algorithm, you will underline 2 and cross off every
multiple of 2:

2 3 4 5 6 7 8 9 10

From here, you simply repeat the process: underline the first number in the list that is neither
crossed nor underline, and then cross off its multiples. Eventually, every number in the list will
either be underlined or crossed out, as shown below. The underlined numbers are prime.

2 3 4 5 6 7 8 9 10

