
Nick Troccoli Handout #5
CS 106A August 9, 2017

Packaging Your Program into a Distributable JAR File
Based on a handout by Eric Roberts and Brandon Burr

Now that you’ve written all these wonderful programs, wouldn’t it be great if you could
package them up and send them to your friends and family so that they could see what
you’ve done? JAR files, or “Java ARchive” files, let you do just that. Here’s a short guide
to making an executable JAR file in Eclipse!

Step 1: Adding a main method
Our programs that have used the ACM libraries and CS 106A Eclipse have started running
via the public void run() method. We changed Eclipse to allow this, to make things
easier for you. But in reality, a Java program needs to start at a particular method in a class,
the public static void main(String[] args) method. In order to export your program
you’ll need to edit your code to explicitly have main(). Then your program should run
fine in any Java compiler. You can do this by adding the following code in the class that
has public void run(), substituting the name of that class for ‘MyClass’ below.

 public static void main(String[] args) {
 (new MyClass()).start(args);
 }

Step 2: Exporting a JAR File
Now that we have a normal running Java program, let’s package it up into a JAR file. A
JAR file is simple a Java ARchive – a file that contains a set of Java class files as well as
potentially other files that will be used by the program. As part of this, we need to export
both a JAR file and a manifest file. The manifest file allows you to specify things like
which is the main class to run when the JAR file is double-clicked, or what the external
libraries are, or even security information about the JAR file. (If you aren’t using other
JAR files, you don’t need to use the manifest file.)

Follow the steps on the following pages to export your program.

 – 2 –

1. Click the project folder in the Eclipse sidebar that you want to export, and click File
-> Export… The following window should appear:

2. Expand the Java folder, and select JAR File. Then click Next.

3. You should see the JAR export window. Expand the project folder on the left and make

sure that the default package is selected, and select the destination of where you
want to save the JAR file using the ‘Browse...” button. Then hit Next.

 – 3 –

4. Click Next again on the following screen.

5. Now you will come to the final screen:

We need to input the name of the class to run when the JAR file is launched. Near the
bottom of the window, select the Main class using the ‘Browse...’ button. The
main class (MyClass, in this case) should show up in the list if you correctly added the
main() method as described previously.

If you are exporting a project without any other JAR files (e.g. without the ACM
libraries), then just click “Finish”. You’re done! Go ahead and send the JAR to family
and friends. Just remember that they need to have Java installed too; see the end of this
handout for more information. If you are exporting a project with other JAR files
(e.g. with the ACM libraries), continue on to the next step.

 – 4 –

6. Now we need to create a manifest file. To do this, we will go through this exporting
process twice. The first time is to generate a manifest file, and the second time is to use
that file when exporting our program. So, from here, make sure the ‘Generate the
manifest file’ radio button near the top of the window is selected, and that check
box for ‘Save the manifest in the workspace' is checked. Click the ‘Browse…’
button associated with the ‘Manifest file’ text box to select the destination of the
manifest file.

7. In the window that appears, click the MyProject folder (or whatever your project is

named), and then in the text box type in the name “manifest” and click “OK” to finish.
The Manifest file path should now appear as something like /MyProject/manifest.
Click the 'Finish' button.

 – 5 –

8. Now you should see the manifest file show up in the Eclipse sidebar. Double-click it

to open it. You need to edit the manifest file to add the line "Class-Path: " followed
by the names of all the JAR files that this program uses, separated by spaces. In this
case, that would include spl.jar, since that contains the ACM libraries, as well as the
JAR file you just exported (in this case called MyJar.jar). When you’re done the
manifest file will look something like this:

Make sure to save the updated manifest file. Now that we have this manifest file, repeat
the entire above process of exporting a JAR file (i.e., click on your project name, pick
Export... from the file menu, select the JAR file option for exporting, etc.). However,
this time you will do something different when you get to the last window, as explained
in the next step.

 – 6 –

9. When you get to the last screen, you do not need to generate a manifest file or specify
the Main class. Instead, just make sure to click the radio button for “Use existing
manifest from workspace”. Now, hit the “Finish” button. Eclipse will use the
manifest file we just created previously to make our JAR file. If it asks you to overwrite
the old JAR file, just say “Yes”.

10. Now you have your JAR file containing your project code, but unfortunately you can’t

simply send it to your friends. This JAR doesn’t contain the code in the other JAR files
it relies on (e.g. spl.jar), nor does it contain any data files your program might use
(text files with data, or even sounds or images). What you’ll want to do is create a new
folder, place your exported JAR file in it, along with any other JAR files your program
uses (like spl.jar and any other the ones you added to the manifest file) and data
files you use. Make sure to put your data files in a folder called res if your code expects
that. Note that you do not need to put spl.jar in a lib folder; put it in the same folder
as your exported JAR file. Once you have all of these files in a single folder, you
should be able to just double-click your JAR file, and have it run your application. You
will need to distribute this entire folder to anyone that you want to share your program
with. Usually the easiest way is to just zip the folder up into a single file, and then email
that. Then, the recipient can unzip the folder and double-click the enclosed JAR file to
run your program!

 – 7 –

A final note regarding the Java Runtime Environment (JRE)
Anyone who has your JAR files does not need Eclipse to run it, but they will need to have
the Java Runtime Environment (JRE) installed on their computer. In fact, you may have
installed the JRE on your own computer at the beginning of CS106A so that you could
work with Java. Some, but not all, computers come pre-installed with the JRE. We just
wanted to point this out in case you pass along the JAR files for your program to someone
who may not have the JRE installed and was having problems trying to run your program
as a result. Pass along the instructions on the CS 106A website to install the JRE.

