
This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.
Based	on	slides	created	by	Keith	Schwarz,	Mehran	Sahami,	Eric	Roberts,	Stuart	Reges,	and	others.

CS	106A,	Lecture	21
Classes

suggested	reading:
Java	Ch.	6

2

Plan for today
•Recap:	HashMaps +	What’s	Trending
•Classes
•Recap

3

Recap: HashMaps

4

Plan for today
•Recap:	HashMaps +	What’s	Trending
•Classes
•Recap

5

Large Java Programs
There	are	some	large programs	written	in	Java!

6

Defining New Variable Types

Email InboxUser

Inbox	Database Email	Sender Login	Manager

7

What Is A Class?

A	class	defines	a	
new	variable	type.

8

Why Is This Useful?
• A	student	registration	system	needs	to	store	info	about	
students,	but	Java	has	no	Student variable	type.

• A	music	synthesizer	app	might	want	to	store	information	
about	different	types	of	instruments,	but	Java	has	no	
Instrument variable	type.

• An	email	program	might	have	many	emails	that	need	to	be	
stored,	but	Java	has	no	Email variable	type.

• Classes let	you	define	new	types	of	variables,	which	lets	you	
decompose	your	program	code	across	different	files.

9

Classes Are Like Blueprints
iPod	blueprint	(class)

state:
current	song
volume
battery	life
behavior:
power	on/off
change	station/song
change	volume
choose	random	song

iPod	(variable)	#1
state:
song	=	"1,000,000	Miles"
volume	=	17
battery	life	=	2.5	hrs
behavior:
power	on/off
change	station/song
change	volume
choose	random	song

iPod	(variable)	#2
state:
song	=	"Letting	You"
volume	=	9
battery	life	=	3.41	hrs
behavior:
power	on/off
change	station/song
change	volume
choose	random	song

iPod	(variable)	#3
state:
song	=	"Discipline"
volume	=	24
battery	life	=	1.8	hrs
behavior:
power	on/off
change	station/song
change	volume
choose	random	song

constructs

10

What Is A Class?

A	class	defines	a	
new	variable	type.

11

Creating A New Class
Let’s	define	a	new	variable	type	called	BankAccount
that	represents	information	about	a	single	person’s	
bank	account.

A	BankAccount:
- contains	the	name	of	account	holder
- contains	the	balance
- can	deposit	money
- can	withdraw	money

12

What if…
What	if	we	could	write	a	program	like	this:

BankAccount nickAccount = new BankAccount();
nickAccount.setName(“Nick”);
nickAccount.deposit(50);

BankAccount rishiAccount = new BankAccount();
rishiAccount.setName(“Rishi”);
rishiAccount.deposit(50);
boolean success = rishiAccount.withdraw(10);
if (success) {

println(“Rishi withdrew $10.”);
}

13

Creating A New Class
1. What	information	is	inside	this	new	
variable	type? These	are	its	private	instance	
variables.

14

Example: BankAccount
// In file BankAccount.java
public class BankAccount {

// Step 1: the data inside a BankAccount
private String name;
private double balance;

}

Each BankAccount object has its own copy
of all instance variables.

15

Creating A New Class
1. What	information	is	inside	this	new	
variable	type? These	are	its	instance	
variables.

2. What	can	this	new	variable	type	do?
These	are	its	public	methods.

16

What if…
What	if	we	could	write	a	program	like	this:

BankAccount nickAccount = new BankAccount();
nickAccount.setName(“Nick”);
nickAccount.deposit(50);
println(nickAccount);

BankAccount rishiAccount = new BankAccount();
rishiAccount.setName(“Rishi”);
rishiAccount.deposit(50);
boolean success = rishiAccount.withdraw(10);
if (success) {

println(“Rishi withdrew $10.”);
}

17

Example: BankAccount
public class BankAccount {

// Step 1: the data inside a BankAccount
private String name;
private double balance;

// Step 2: the things a BankAccount can do
public void deposit(double amount) {

balance += amount;
}

public boolean withdraw(double amount) {
if (balance >= amount) {

balance -= amount;
return true;

}
return false;

}
}

18

Defining Methods In Classes
Methods	defined	in	classes	can	be	called
on	an	instance	of	that	class.

When	one	of	these	methods	executes,
it	can	reference	that	object’s	copy of
instance	variables.

ba1.deposit(0.20);
ba2.deposit(1000.00);

This	means	calling	one	of	these	methods	on	different	objects	has	
different	effects.

name = "Marty"
balance = 1.45
deposit(amount) {

balance += amount;
}

name = "Mehran"
balance = 901000.00
deposit(amount) {

balance += amount;
}

ba1

ba2

19

Getters and Setters
Instance	variables	in	a	class	should	always	be	private.		This	is	so	only	
the	object	itself	can	modify	them,	and	no-one	else.

To	allow	the	client	to	reference	them,	we	define	public	methods	in	
the	class	that	set an	instance	variable’s	value	and	get (return)	an	
instance	variable’s	value.	These	are	commonly	known	as	getters and	
setters.

account.setName(“Nick”);
String accountName = account.getName();

Getters	and	setters	prevent	instance	variables	from	being	tampered	
with.

20

Example: BankAccount
public class BankAccount {

private String name;
private double balance;

...
public void setName(String newName) {

if (newName.length() > 0) {
name = newName;

}
}

public String getName() {
return name;

}
}

21

Creating A New Class
1. What	information	is	inside	this	new	
variable	type? These	are	its	instance	
variables.

2. What	can	this	new	variable	type	do?
These	are	its	public	methods.

3. How	do	you	create	a	variable	of	this	type?
This	is	the	constructor.

22

Constructors
GRect rect = new GRect();

GRect rect2 = new GRect(50, 50);

This is calling a special method! The GRect constructor.

23

Constructors
BankAccount ba1 = new BankAccount();

BankAccount ba2 = new BankAccount(“Nick”, 50);

The constructor is executed when a new object is created.

24

Example: BankAccount
public class BankAccount {
// Step 1: the data inside a BankAccount
private String name;
private double balance;

// Step 2: the things a BankAccount can do (omitted)
// Step 3: how to create a BankAccount
public BankAccount(String accountName, double startBalance) {

name = accountName;
balance = startBalance;

}

public BankAccount(String accountName) {
name = accountName;
balance = 0;

}
}

25

Using Constructors
BankAccount ba1 =

new BankAccount("Marty", 1.25);

BankAccount ba2 =
new BankAccount("Mehran", 900000.00);

• When	you	call	a	constructor	(with	new):	
– Java	creates	a	new	object	of	that	class.
– The	constructor	runs,	on	that	new	object.
– The	newly	created	object	is	returned	to	your	program.

name = "Marty"
balance = 1.25
BankAccount(nm, bal) {

name = nm;
balance = bal;

}

name = "Mehran"
balance = 900000.00
BankAccount(nm, bal) {

name = nm;
balance = bal;

}

ba1

ba2

26

Constructors
• constructor:	Initializes	the	state	of	new	objects	as	they	are	created.

public ClassName(parameters) {
statements;

}

– The	constructor	runs	when	the	client	says	new ClassName(...);

– no	return	type is	specified;	it	"returns"	the	new	object	being	created

– If	a	class	has	no	constructor,	Java	gives	it	a	default	constructor with	no	
parameters	that	sets	all	fields	to	default	values	like	0 or	null.

27

Plan for today
•Recap:	HashMaps +	What’s	Trending
•Classes
•Recap

28

What Is A Class?

A	class	defines	a	
new	variable	type.

29

Creating A New Class
1. What	information	is	inside	this	new	
variable	type? These	are	its	instance	
variables.

2. What	can	this	new	variable	type	do?
These	are	its	public	methods.

3. How	do	you	create	a	variable	of	this	type?
This	is	the	constructor.

30

Recap
•Recap:	HashMaps +	What’s	Trending
•Classes
•Recap

Next	time:	more	classes

