
Mehran Sahami Handout #12
CS 106A October 6, 2017

Control Statements
Based on a handout by Eric Roberts

This handout offers some additional notes on Java’s control statements (described more
fully in Chapter 4 of the textbook) that emphasize the important concepts. It also
describes a programming problem making use of various control structures.

To write programs, you need to understand control statements from two perspectives: you
must have a holistic sense of when to use them and why, but you must also learn to
understand the reductionistic details. For this big-picture perspective, you can rely to a
large extent on your experience from Karel:

• If you want to test a condition that requires an if statement in Karel, you need the if

statement in Java.
• If you would use the while or for statement in Karel, you will presumably use the

same statement form in Java.

The other holistic point that is essential about control statements is that the control line
is conceptually independent from the body. Thus, if you see a construct like

for (int i = 0; i < 10; i++) { Control line
 statements Body
}

the statements in the body will be repeated for each of the values of i from 0 to 9. It
doesn’t matter at all what those statements are.

Boolean data
Another important topic is that of the data type boolean, which is the means by which
Java programs ask questions. In Karel, the counterparts to boolean are the conditions
such as frontIsClear() or beepersPresent(). In Java, the range of available
conditions is much richer and involves the relational operators and the logical operators
(both covered on page 78 of textbook). The most important lessons to take from these
sections are:

• Watch out for confusing = (assignment) with == (equality). This feature of several

programming languages (including C, C++, and Java) has probably caused more bugs
than any other.

• Be careful to understand both the interpretation and the evaluation order of the logical
operators && (and), || (or), and ! (not).

The time you put into making sure you understand boolean data now will pay for itself
many times over when the programs get more complicated later in the quarter.

 – 2 –

Checkerboard problem
Create a GraphicsProgram subclass that draws a checkerboard in the graphics window.
The number of rows and columns are given by the named constants NROWS and NCOLUMNS,
and the squares should be sized so that they fill the vertical space. For example, if NROWS
and NCOLUMNS are both 8, running this program should produce the following output:

Graphics library documentation
The javadoc documentation for the ACM libraries is available under the “Links” section
of the CS 106A home page. Also, the methods in Figure 1 will help with the assignment.

Figure 1. Some useful methods in acm.graphics
Constructors
 new GLabel(String text) or new GLabel(String text, double x, double y)

Creates a new GLabel object; the second form sets its location as well.

 new GRect(double x, double y, double width, double height)
Creates a new GRect object; the x and y parameters can be omitted and default to 0.

 new GOval(double x, double y, double width, double height)
Creates a new GOval object; the x and y parameters can be omitted and default to 0.

 new GLine(double x1, double y1, double x2, double y2)
Creates a new GLine object connecting (x1, y1) and (x2, y2).

Methods common to all graphical object
 void setLocation(double x, double y)

Sets the location of this object to the specified coordinates.

 void move(double dx, double dy)
Moves the object using the displacements dx and dy.

 double getWidth()
Returns the width of the object.

 double getHeight()
Returns the height of the object.

 void setColor(Color c)
Sets the color of the object.

Methods available for GRect and GOval only
 void setFilled(boolean fill)

Sets whether this object is filled (true means filled, false means outlined).

 boolean isFilled()
Returns true if the object is filled.

 void setFillColor(Color c)
Sets the color used to fill this object. If the color is null, filling uses the color of the object.

Methods available for GLabel only
 void setFont(String fontName)

Sets the font, as described in Chapter 5.

 double getAscent()
Returns the height above the baseline.

 – 3 –

Solution to the Checkerboard problem

/*
 * File: Checkerboard.java
 * -----------------------
 * This program draws a checkerboard.
 */

import acm.graphics.*;
import acm.program.*;

/*
 * This class draws a checkerboard on the graphics window.
 * The size of the checkerboard is specified by the
 * constants NROWS and NCOLUMNS, and the checkboard fills
 * the vertical space available.
 */

public class Checkerboard extends GraphicsProgram {

 /* Number of rows */
 private static final int NROWS = 8;

 /* Number of columns */
 private static final int NCOLUMNS = 8;

 /* Runs the program */
 public void run() {
 int sqSize = getHeight() / NROWS;
 for (int i = 0; i < NROWS; i++) {
 for (int j = 0; j < NCOLUMNS; j++) {
 int x = j * sqSize;
 int y = i * sqSize;
 GRect sq = new GRect(x, y, sqSize, sqSize);
 sq.setFilled(((i + j) % 2) != 0);
 add(sq);
 }
 }
 }
}

