Section Handout \#2-Simple Java

1. The Fibonacci sequence

In the 13th century, the Italian mathematician Leonardo Fibonacci-as a way to explain the geometric growth of a population of rabbits-devised a mathematical sequence that now bears his name. The first two terms in this sequence, $\mathbf{F i b}(0)$ and $\mathbf{F i b}(1)$, are 0 and 1 , and every subsequent term is the sum of the preceding two. Thus, the first several terms in the Fibonacci sequence look like this:

```
Fib(0) = 0
Fib(1) = 1
Fib(2) = 1 (0+1)
Fib(3) = 2 (1+1)
Fib(4) = 3 (1 +2)
Fib(5) = 5 (2+3)
```

Write a program that displays the terms in the Fibonacci sequence, starting with $\operatorname{Fib}(0)$ and continuing as long as the terms are less than or equal to 10,000 . Thus, your program should produce the following sample run:

Fibonacci		
This program lists the Fibonacci sequence.		
0		
1		
1		
2		
3		
5		
8		
13		
21		
34		
55		
89		
144		
233	377	
610		

This program should continue as long as the value of the term is less than or equal to the maximum value. To do this, you should use a while loop, presumably with a header line that looks like this:
while (term <= MAX_TERM_VALUE)
Note that the maximum term value is specified using a named constant. Your program should work properly regardless of the value of MAX_TERM_VALUE.

2. Calculating lines

Write an interactive console program that calculates y coordinates on a line. First, it prompts the user for a slope, m, and an intercept term, b (remember that a line has an equation of the form $y=m x+b$). Then, the program prompts the user for x values until the user enters the SENTINEL (the value of which is specified using a named constant). For each entered number, print the y value on that line for that entered x value. Here is a sample run of the program, with SENTINEL = $\mathbf{- 1}$ (user input is underlined):

```
This program calculates y coordinates for a line.
Enter slope (m): \underline{2}
Enter intercept (b): 4
Enter x: 5
f(5) = 14
Enter x: 1
f(1) = 6
Enter x: -1
```

Your program should work properly regardless of the value of SENTINEL.

3. Drawing Centered Text

Your job is to write a GraphicsProgram that displays the text message (i.e., GLabel):

CS106A rocks my socks!

The text should be displayed in SansSerif 28-point font, and centered horizontally and vertically in the middle of the graphics window, looking something like this:

You can find the width of a label by calling label.getWidth() and the height it extends above the baseline by calling label.getAscent(). If you want to center a label, you need to shift its origin by half of these distances in each direction.

4. Drawing a face

Your job is to draw a robot-looking face like the one shown in the following sample run:

This simple face consists of four parts - a head, two eyes, and a mouth - which are arranged as follows:

- The head. The head is a big rectangle whose dimensions are given by the named constants head_width and head_height. The head is gray.
- The eyes. The eyes should be circles whose radius in pixels is given by the named constant eye_radius. The centers of the eyes should be set horizontally a quarter of the width of the head in from either edge, and one quarter of the distance down from the top of the head. The eyes are yellow.
- The mouth. The mouth should be centered with respect to the head in the x-dimension and one quarter of the distance up from the bottom of the head in the y-dimension. The dimensions of the mouth are given by the named constants mouth_width and mouth_height. The mouth is white.

Finally, the robot face should be centered in the graphics window.

