
Mehran Sahami Handout #18 
CS 106A October 13, 2017 

Variables, variables, everywhere… 
Based on a handout by Patrick Young. 

 
Local Variables 
Local variables are created local to the method (or the block—see “Block Scope” section 
below) in which they are defined. They are destroyed when execution of the method has 
been completed.  Local variables can only be accessed from within the method in which 
they are declared.  Because of their transient nature, local variables cannot store persistent 
information about an object between method calls. 
 
Local Variables Example 
Consider, for example, the following snippet of code. 
 
public class AnExample extends ConsoleProgram { 
 
 public void methodOne { 

 int a = readInt("Enter a: "); 
 println("a = " + a); 

  } 
 
 public void methodTwo { 

 int b = a;  // BUG!: cannot refer to variable a in methodOne 
 println("b = " + b); 

 } 
} 
 
The variables a and b are local variables declared within different methods in the class 
AnExample. Because these variables are local variables, a can only be referred to within 
methodOne and variable b can only be accessed within methodTwo. Our attempt to 
initialize b using the value of a is illegal, as code in methodTwo cannot access local 
variables from methodOne or any other method. 
 
Because local variable values do not persist after their containing method has completed, 
the variable a will be destroyed when methodOne has completed execution. The next time 
methodOne is called, a new variable a will be created. 
 
Block Scope 
While we typically think of local variables as local to a particular method, in Java local 
variables are actually local to a block of code. While a method defines a block of code 
(since the opening and closing braces of the method define a block), for and while 
loops, if-statements, and other constructs are also considered blocks of code. If we 
declare a local variable inside one of these constructs, the local variable will be created 
when it is declared in the block and destroyed when the block ends execution. 
 



  – 2 – 

Consider the following example: 
 

public class AnExample extends ConsoleProgram { 
  
 public void methodThree { 
  int a = 4; 
 
    for (int i = 0; i < 5; i++) { 
   int b = a; // this is okay 
 
   if (a > b) { // okay to access a and b here 
    int c = 3; 
 
    println(i); // okay to access i here 
    println(b); // okay to access b here 
    println(c); // okay to access c here 
   } 
 
   println(c); // illegal: c is no longer in scope here 
  } 
 
  println(a); // okay to access a here 
  println(b); // illegal: b is only in scope in body of for loop 
  println(i); // illegal: i is only in scope in body of for loop 
 } 
} 

 
The variable a is local to methodThree, so accessing a within the for loop, or in the 
println is fine.  The variables i and b are only in scope (i.e., "alive") within the confines 
of the for loop in which they are declared.  They are no longer available by the time the 
last two printlns try to access them.  The variable c is only in scope within the confines 
of the if statement body in which it is declared.  Note that a new copy of c will get 
created each time the if statement body is executed, therefore it cannot be used to store 
values across iterations of the for loop. 
 
Instance Variables 
Instance variables (also known as "I-vars") are defined as part of a class, but not within 
any particular method of the class.  Each object of the class will have its own independent 
copy of all the instance variables defined in a class. Instance variables are created when 
an object is created.  They are destroyed when their corresponding object is destroyed.  
Instance variables can be accessed from any method defined as part of the class in which 
the instance variable is defined. Access to instance variables from other classes is 
controlled by the variable’s visibility specifier (e.g., public or private).  Instance 
variables that are public are accessible from methods in other classes while those that 
are private (which is by far the more common case) are not. 
 



  – 3 – 

Instance Variables Example 
public class Thing { 
 public Thing() { 
  x = 0; 
 } 
 
 /* Public instance variable */ 
 public int x; 
} 
 
public class MyProgram extends ConsoleProgram { 
 
 public void run() { 
  Thing th1 = new Thing(); 
  Thing th2 = new Thing(); 
  Thing th3 = new Thing(); 
  th1.x = 8;  // Can access x here because it is public 
  th2.x = 17; 
  th3.x = 18; 
  println(th1.x); 
  println(th2.x); 
  println(th3.x); 
 } 
} 

 
In this case we have a class Thing which has an instance variable x.  Each instance of the 
class has its own independent copy of the variable. Our main program creates three 
instances (objects) of the Thing class.  It then sets the value of each instance’s x variable. 
Because there are three different Thing objects, there are three different x variables—one 
x variable per instance. We can change the variable values independently from one 
another. When we print out the results we’ll see: 
 

8 
17 
18 

 
Class Variables 
As with instance variables, class variables are defined as part of a class. However, in 
contrast to instance variables, with a class variable there is only one copy of the variable 
which is shared by all instances of the class.  Similar to an instance variable, a class 
variable can be accessed by any method in the class in which the variable is declared. 
Access to class variables from other classes is controlled by the variable’s visibility 
specifier (e.g., public or private).  Class variables that are public are accessible from 
methods in other classes while those that are private are not. 
 
Syntactically, class variable declarations are distinguished from instance variable 
declarations by using the keyword static before the variable type in the variable 
declaration.  Because of this, class variables are sometimes referred to as static 
variables.  Note that the constants you have seen so far were all in fact class variables, 
since they were defined using the keyword static, and it would make sense that all 
objects of a particular class would share the same value for some constant.   



  – 4 – 

Class Variables Example 
 

public class Thing { 
 public Thing() { 
  x = 0; 
 } 
 
 /* Public instance variable */ 
 public int x; 
 
 /* Public class variable */ 
 public static int y; 
} 
 
public class MainProgram extends ConsoleProgram { 
 
 public void run() { 
  Thing th1 = new Thing(); 
  Thing th2 = new Thing(); 
  Thing th3 = new Thing(); 
 
  // NOTE: we can access a public class variable directly via  
  // the class name (see below). 
  Thing.y = 7; 
 
  // We can also access a public class variable by any object 
  // of that class. 
  th1.y = 8; 
  th2.y = 17; 
  th3.y = 18; 
 
  println(Thing.y); 
  println(th1.y); 
  println(th2.y); 
  println(th3.y); 
 } 
} 

 
In this case we have a class Thing which has a public instance variable x and a public 
class variable y. All instances (objects) of that class share the variable.  Our main 
program creates three instances of the Thing class.  When it changes the value of y, it is 
changing the value shared by all the instances.  When we print the results, we’ll see: 
 

18 
18 
18 
18 
 
As seen in the example above, a public class variable can be accessed via the name of the 
class instead of through an instance of the class like this: 
 

Thing.y = 7; 

 
This has an important advantage over accessing the variable via the name of an instance 
of the object: it emphasizes that y is really a property of the class, shared by all the 



  – 5 – 

instances of a class, rather than a property of a particular instance of the class.  Compare 
the following two code snippets: 
 

Thing th1 = new Thing(); 
th1.y = 7; 

 Thing th1 = new Thing(); 
Thing.y = 7; 

Example 1      Example 2 
 
Looking at Example 1, we cannot tell whether y is an instance variable or a class variable.  
In order to know for sure which type of variable is in use, we need to search out the 
declaration for the y variable and see if it used the static keyword. In contrast, looking 
at Example 2, we see that y must be a class variable, because we cannot access an 
instance variable using a class name.  Because of this reason, using the name of the class 
(rather than the name of an instance) is the preferred method for accessing a class 
variable. 
 
Constants 
As we discussed in class, we will sometimes find it useful to define a "variable" whose 
value does not change during the entire program. Such a variable is called a constant. In 
this case, the constant does not fulfill the traditional purpose of a variable (i.e., storing a 
temporary program value).  To declare a variable as a constant, use the keyword final 
when declaring the variable.  As mentioned above, virtually all constants are class 
variables.  However, it is possible to also define constant instance variables or constant 
local variables. 
 


