
Mehran Sahami Handout #39A
CS 106A November 15, 2017

Solution to Section #7
Based on a handout by Eric Roberts

1. Using Interactors
// File: BoxDiagram.java
// This program allows the user to create a set of boxes with labels
// and then drag them around in the window.

import acm.graphics.*;
import acm.program.*;
import java.util.*;
import java.awt.event.*;
import javax.swing.*;

public class BoxDiagram extends GraphicsProgram {

/* Initializes the program */
 public void init() {
 contents = new HashMap<String,GObject>();
 createController();
 addActionListeners();
 addMouseListeners();
 }

/* Creates the control strip at the bottom of the window */
 private void createController() {
 nameField = new JTextField(MAX_NAME);
 nameField.addActionListener(this); // detect ENTER pressed too
 addButton = new JButton("Add");
 removeButton = new JButton("Remove");
 clearButton = new JButton("Clear");
 add(new JLabel("Name"), SOUTH);
 add(nameField, SOUTH);
 add(addButton, SOUTH);
 add(removeButton, SOUTH);
 add(clearButton, SOUTH);
 }

/* Adds a box with the given name at the center of the window */
 private void addBox(String name) {
 GCompound box = new GCompound();
 GRect outline = new GRect(BOX_WIDTH, BOX_HEIGHT);
 GLabel label = new GLabel(name);
 box.add(outline, -BOX_WIDTH / 2, -BOX_HEIGHT / 2);
 box.add(label, -label.getWidth() / 2, label.getAscent() / 2);
 add(box, getWidth() / 2, getHeight() / 2);
 contents.put(name, box);
 }

/* Removes all boxes in the contents table */
 private void removeContents() {
 Iterator<String> iterator = contents.keySet().iterator();
 while (iterator.hasNext()) {
 remove(contents.get(iterator.next()));
 }
 contents.clear(); // Clear all entries in the HashMap
 }

/* Called in response to button actions */
 public void actionPerformed(ActionEvent e) {
 Object source = e.getSource();
 if (source == addButton || source == nameField) {
 addBox(nameField.getText());
 } else if (source == removeButton) {
 String text = nameField.getText();
 GObject obj = contents.get(text);
 if (obj != null) {
 remove(obj);
 contents.remove(text);
 }
 } else if (source == clearButton) {
 removeContents();
 }
 }

/* Called on mouse press to record the coordinates of the click */
 public void mousePressed(MouseEvent e) {
 last = new GPoint(e.getPoint());
 currentObject = getElementAt(last);
 }

/* Called on mouse drag to reposition the object */
 public void mouseDragged(MouseEvent e) {
 if (currentObject != null) {
 currentObject.move(e.getX() - last.getX(),
 e.getY() - last.getY());
 last = new GPoint(e.getPoint());
 }
 }

/* Called on mouse click to move this object to the front */
 public void mouseClicked(MouseEvent e) {
 if (currentObject != null) currentObject.sendToFront();
 }

/* Private constants */
 private static final int MAX_NAME = 25;
 private static final double BOX_WIDTH = 120;
 private static final double BOX_HEIGHT = 50;

/* Private instance variables */
 private HashMap<String,GObject> contents;
 private JTextField nameField;
 private JButton addButton;
 private JButton removeButton;
 private JButton clearButton;
 private GObject currentObject;
 private GPoint last;

}

2. Using the Debugger

Error #1:

In setupBall(), the argument ball is only a copy of the reference declared in
run():

private void setupBall(GOval ball) {

ball = new GOval(BALL_RADIUS * 2, BALL_RADIUS * 2);

We initialize a ball in setupBall(), but when the method finishes, we no longer have
any reference to the GOval we allocated. Thus, back in run(), we try moving a null
GOval:

GOval ball = null;
…
setupLabel();
setupBall(ball);

while (true) {

ball.move(dx, dy);
...

We might think that any changes we make to an object are saved, no matter where the
changes are made. This is largely true, but only when changes are made to an already
existing object. Like an int, double, or boolean, the reference itself is just a copy
when passed to another method. Consequently, we can’t change the reference itself, only
data inside the object.

Solution(s):

Either allocate the ball GOval before passing it to setupBall(), or make ball an
instance variable and don’t even bother passing the GOval as an argument.

Error #2:

checkForCollisions() is supposed to change dx and dy, but we are only passing
copies of the two variables:

double dx = rgen.nextDouble(MIN_DX, MAX_DX);
double dy = rgen.nextDouble(MIN_DY, MAX_DY);
…
while (true) {

ball.move(dx, dy);
checkForCollisions(ball, dx, dy);

In other words, checkForCollisions() will have its own copies of dx and dy, and
any changes we make to the two variables will not affect the original variables in run().

Solution(s):

Make dx and dy instance variables and don’t even bother passing them as arguments.
Not every variable should be an instance variable, of course. But as a rule of thumb, any
variable that will be changed over the course of multiple methods should be an instance
variable.

If you need to save any changes to an int, double, or boolean, you’ll need to return
that value out of the method. Of course, you can only return one variable from a method.
As an alternative solution, we could have split checkForCollisions() into two
separate methods checkForXCollision() and checkForYCollision() that
return the updated values.

Error #3:

The switch statement in getRandomNewColor() is missing break statements at the
end of each case (and the end of default too, as a formality). Because of this,
newColor will always be Color.BLACK. Moreover, once the label and ball are
already black, getRandomNewColor() will infinite loop because newColor is
always the same as prevColor and thus we will never return from the method:

if (!newColor.equals(prevColor)) return newColor;

Thus, the program will get stuck in checkForCollisions() when calling
getRandomNewColor().

Solution(s):

Add break statements at the end of default and at the end of each case.

Error #4:

We adjust the location of the GLabel before we adjust the size:

double x = (getWidth() / 2.0) - (text.getWidth() / 2.0);
double y = getHeight() - TEXT_HEIGHT;
text.setLocation(x, y);
text.setFont(new Font("Arial", Font.BOLD, 32));

As a result, the location is based off the smaller, default size.

Solution(s):

Resize the GLabel first and only afterwards set the location.

