Mehran Sahami Handout #42
CS 106A November 17, 2017

FlyTunes Program (Data Structures Example)

File: Song.java

/*
* File: Song.java
x e
* Keeps track of the information for one song
* in the music shop, including its name, the band
* that it is by, and its price.
*
/

public class Song {

/** Constructor
* Note that the song name and band name are immutable
* once the song is created.
*/
public Song(String songName, String bandName, double songPrice) {
title = songName;
band = bandName;
price = songPrice;

}

public String getSongName() {
return title;
}

public String getBandName() {
return band;
}

public void setPrice(double songPrice) {
price = songPrice;
}

public double getPrice() {
return price;
}

/** Returns a string representation of a song, listing
* the song name, the band name, and its price.
*/
public String toString() {
return ("'\'""" + title + "\" by " + band
+ " costs $" + price);

}

/* private instance variables */
private String title;
private String band;
private double price;

File: Album.java

/*
*
*
*
*
*

*

File: Album.java

Keeps track of all the information for one album
in the music shop, including the list of songs
it contains.

/

import java.util._*;

public class Album {

/** Constructor
* Note that the album name and year are immutable
* once the album is created.
*/
public Album(String albumName, int year) {
title = albumName;
releaseYear = year;

}

public String getAlbumName() {
return title;
}

public int getReleaseYear() {
return releaseYear;
}

/** Adds a song to this album. There is no duplicate
* checking for songs that are added.
*/
public void addSong(Song song) {
songs.add(song);

/** Returns an iterator over all the songs that are
* on this album.
*/
public Iterator<Song> getSongs() {
return songs.iterator();
}

/** Returns a string representation of an album.
*/
public String toString() {
return (“"Album: [" + title + "] released in "
+ releaseYear);

}

/* private instance variables */

private String title;

private int releaseYear;

private ArraylList<Song> songs = new ArrayList<Song>();

File: FlyTunesStore.java

/* File: FlyTunesStore.java

*

* This program handles the data management for an on-line music store
* where we manage an inventory of albums as well as individual songs.
*/

import acm.program.*;
import java.util.*;

public class FlyTunesStore extends ConsoleProgram {

public void run() {
while (true) {
int selection = getSelection();
if (selection == QUIT) break;
switch (selection) {
case LIST_SONGS:
listSongs(Q);
break;
case LIST_ALBUMS:
listAlbums(Q);
break;
case ADD_SONG:
addSong(Q);
break;
case ADD_ALBUM:
addAlbumQ);
break;
case LIST_SONGS_ON_ALBUM:
listSongsOnAlbum();
break;
case UPDATE_SONG_PRICE:
updateSongPrice();
break;
default:
printin("Invalid selection™);
break;
}
}
}

/** Prompts the user to pick a selection from a menu
* of options. Returns the users selection. Note that
* there is no bounds checking done on the users selection.
*/
private int getSelection() {
printin(Q);
printIn(""'Please make a selection (0 to quit):");
printIn("'1. List all songs'™);
printIn(’'2. List all albums™);
printIn("’*3. Add a song'™);
printin('4. Add an album™);
printIn("'5. List songs on an album™);
printIn(*'6. Update song price");
int choice = readlnt("Selection: ");
return choice;

/** Lists all the songs carried by the store */
private void listSongs(Q) {
printIn(""All songs carried by the store:");
for(int i = 0; i < songs.size(); i++) {
printin(songs.get(i).toString());
}

}

/** Lists all the albums carried by the store */
private void listAlbums() {
printin(""All albums carried by the store:');
Iterator<String> albumlt = albums.keySet().iterator();
while (albumlt.hasNext()) {
printin(albums.get(albumlt.next()).-toString());

/** Checks to see if the song (defined by its name and
* the band that performs it) is already in the store. It
* returns the index of the song in the store"s song list
* 1f it already exists and -1 otherwise.
*/
private int findSong(String name, String band) {
for(int i = 0; i < songs.size(); i++) {
if (songs.get(i).getSongName().equals(name)
&& songs.get(i).getBandName() .equals(band)) {
return i;
}
}
return -1;

}

/** Adds a new song to the store"s inventory and returns that

* song to the caller. |If the song already exists in the
store, it returns the existing song from the inventory.
Otherwise it returns the new song that was just added to
the inventory. The method may return null if the user
decides not to enter a song (i.e., user just presses
Enter when asked for the song name).

X ok X %

*/

private Song addSong() {
String name = readLine("'Song name (Enter to quit): ');
if (name.equals(")) return null;

String band = readLine('Band name: ');

int songlndex = findSong(name, band);

if (songlndex '= -1) {
printIn(""That song is already in the store.™);
return songs.get(songlndex);

} else {
double price = readDouble(*Price: ");
Song song = new Song(name, band, price);
songs.add(song);
printIn("’"New song added to the store.');
return song;

/** Adds a new album to the store®s inventory. If the album
* already exists in the store, then the inventory is
* unchanged. Otherwise a new album and any new songs it
* contains are added to the store®s inventory.
*/
private void addAlbum(Q) {
String name = readLine(Album name: ");

if (albums.containsKey(name)) {
printIn(""'That album is already in the store.™);
} else {
int year = readlnt(""Release year: ");
Album album = new Album(name, year);
albums.put(name, album);

while (true) {
Song song = addSong(Q);
if (song == null) break;
album.addSong(song);

printIn("'"New album added to the store.™);

}
}

/** Lists all the songs on a single album in the inventory. */
private void listSongsOnAlbum() {
String name = readLine("Album name: ");
if (albums.containsKey(name)) {
Iterator<Song> it = albums.get(name).getSongs();
printin(name + " contains the following songs:™);
while (it.hasNext()) {
Song song = it.next();
println(song.toString());

}
} else {
printIn("'"No album by that name in the store.™™);

}

/** Updates the price of a song in the store"s inventory.
* Note that this price update will also affect all albums
* that contain this song.
*/
private void updateSongPrice() {
String name readLine("'Song name: ');
String band readLine("'Band name: ');

int songlndex = findSong(name, band);

if (songlndex == -1) {
printIn(""'That song is not in the store.);
} else {

double price = readDouble("New price: ");
songs.get(songlndex).setPrice(price);
printIn(""Price for " + name + " updated.');

/* Constants */

private static final int QUIT = O;

private static final int LIST_SONGS = 1;
private static final int LIST_ALBUMS = 2;
private static final int ADD_SONG = 3;
private static final int ADD_ALBUM = 4;
private static final int LIST_SONGS ON_ALBUM
private static final int UPDATE_SONG_ PRICE =

= 5;
6;
/* private instance variables */

// Inventory all the albums carried by the store
private Map<String,Album> albums = new HashMap<String,Album>();

// Inventory of all the songs carried by the store
private ArrayList<Song> songs = new ArrayList<Song>();

