
Mehran Sahami Handout #42
CS 106A November 17, 2017

FlyTunes Program (Data Structures Example)

File: Song.java

/*
 * File: Song.java
 * ---------------
 * Keeps track of the information for one song
 * in the music shop, including its name, the band
 * that it is by, and its price.
 */

public class Song {

 /** Constructor
 * Note that the song name and band name are immutable
 * once the song is created.
 */
 public Song(String songName, String bandName, double songPrice) {
 title = songName;
 band = bandName;
 price = songPrice;
 }

 public String getSongName() {
 return title;
 }

 public String getBandName() {
 return band;
 }

 public void setPrice(double songPrice) {
 price = songPrice;
 }

 public double getPrice() {
 return price;
 }

 /** Returns a string representation of a song, listing
 * the song name, the band name, and its price.
 */
 public String toString() {
 return ("\"" + title + "\" by " + band
 + " costs $" + price);
 }

 /* private instance variables */
 private String title;
 private String band;
 private double price;
}

 – 2 –

File: Album.java

/*
 * File: Album.java
 * ----------------
 * Keeps track of all the information for one album
 * in the music shop, including the list of songs
 * it contains.
 */

import java.util.*;

public class Album {

 /** Constructor
 * Note that the album name and year are immutable
 * once the album is created.
 */
 public Album(String albumName, int year) {
 title = albumName;
 releaseYear = year;
 }

 public String getAlbumName() {
 return title;
 }

 public int getReleaseYear() {
 return releaseYear;
 }

 /** Adds a song to this album. There is no duplicate
 * checking for songs that are added.
 */
 public void addSong(Song song) {
 songs.add(song);
 }

 /** Returns an iterator over all the songs that are
 * on this album.
 */
 public Iterator<Song> getSongs() {
 return songs.iterator();
 }

 /** Returns a string representation of an album.
 */
 public String toString() {
 return ("Album: [" + title + "] released in "
 + releaseYear);
 }

 /* private instance variables */
 private String title;
 private int releaseYear;
 private ArrayList<Song> songs = new ArrayList<Song>();
}

 – 3 –

File: FlyTunesStore.java
/* File: FlyTunesStore.java
 * ------------------------
 * This program handles the data management for an on-line music store
 * where we manage an inventory of albums as well as individual songs.
 */

import acm.program.*;
import java.util.*;

public class FlyTunesStore extends ConsoleProgram {

 public void run() {
 while (true) {
 int selection = getSelection();
 if (selection == QUIT) break;
 switch (selection) {
 case LIST_SONGS:
 listSongs();
 break;
 case LIST_ALBUMS:
 listAlbums();
 break;
 case ADD_SONG:
 addSong();
 break;
 case ADD_ALBUM:
 addAlbum();
 break;
 case LIST_SONGS_ON_ALBUM:
 listSongsOnAlbum();
 break;
 case UPDATE_SONG_PRICE:
 updateSongPrice();
 break;
 default:
 println("Invalid selection");
 break;
 }
 }
 }

 /** Prompts the user to pick a selection from a menu
 * of options. Returns the users selection. Note that
 * there is no bounds checking done on the users selection.
 */
 private int getSelection() {
 println();
 println("Please make a selection (0 to quit):");
 println("1. List all songs");
 println("2. List all albums");
 println("3. Add a song");
 println("4. Add an album");
 println("5. List songs on an album");
 println("6. Update song price");
 int choice = readInt("Selection: ");
 return choice;
 }

 – 4 –

 /** Lists all the songs carried by the store */
 private void listSongs() {
 println("All songs carried by the store:");
 for(int i = 0; i < songs.size(); i++) {
 println(songs.get(i).toString());
 }
 }

 /** Lists all the albums carried by the store */
 private void listAlbums() {
 println("All albums carried by the store:");
 Iterator<String> albumIt = albums.keySet().iterator();
 while (albumIt.hasNext()) {
 println(albums.get(albumIt.next()).toString());
 }
 }

 /** Checks to see if the song (defined by its name and
 * the band that performs it) is already in the store. It
 * returns the index of the song in the store's song list
 * if it already exists and -1 otherwise.
 */
 private int findSong(String name, String band) {
 for(int i = 0; i < songs.size(); i++) {
 if (songs.get(i).getSongName().equals(name)
 && songs.get(i).getBandName().equals(band)) {
 return i;
 }
 }
 return -1;
 }

 /** Adds a new song to the store's inventory and returns that
 * song to the caller. If the song already exists in the
 * store, it returns the existing song from the inventory.
 * Otherwise it returns the new song that was just added to
 * the inventory. The method may return null if the user
 * decides not to enter a song (i.e., user just presses
 * Enter when asked for the song name).
 */
 private Song addSong() {
 String name = readLine("Song name (Enter to quit): ");
 if (name.equals("")) return null;

 String band = readLine("Band name: ");
 int songIndex = findSong(name, band);
 if (songIndex != -1) {
 println("That song is already in the store.");
 return songs.get(songIndex);
 } else {
 double price = readDouble("Price: ");
 Song song = new Song(name, band, price);
 songs.add(song);
 println("New song added to the store.");
 return song;
 }
 }

 – 5 –

 /** Adds a new album to the store's inventory. If the album
 * already exists in the store, then the inventory is
 * unchanged. Otherwise a new album and any new songs it
 * contains are added to the store's inventory.
 */
 private void addAlbum() {
 String name = readLine("Album name: ");

 if (albums.containsKey(name)) {
 println("That album is already in the store.");
 } else {
 int year = readInt("Release year: ");
 Album album = new Album(name, year);
 albums.put(name, album);

 while (true) {
 Song song = addSong();
 if (song == null) break;
 album.addSong(song);
 }
 println("New album added to the store.");
 }
 }

 /** Lists all the songs on a single album in the inventory. */
 private void listSongsOnAlbum() {
 String name = readLine("Album name: ");
 if (albums.containsKey(name)) {
 Iterator<Song> it = albums.get(name).getSongs();
 println(name + " contains the following songs:");
 while (it.hasNext()) {
 Song song = it.next();
 println(song.toString());
 }
 } else {
 println("No album by that name in the store.");
 }
 }

 /** Updates the price of a song in the store's inventory.
 * Note that this price update will also affect all albums
 * that contain this song.
 */
 private void updateSongPrice() {
 String name = readLine("Song name: ");
 String band = readLine("Band name: ");

 int songIndex = findSong(name, band);
 if (songIndex == -1) {
 println("That song is not in the store.");
 } else {
 double price = readDouble("New price: ");
 songs.get(songIndex).setPrice(price);
 println("Price for " + name + " updated.");
 }
 }

 – 6 –

 /* Constants */

 private static final int QUIT = 0;
 private static final int LIST_SONGS = 1;
 private static final int LIST_ALBUMS = 2;
 private static final int ADD_SONG = 3;
 private static final int ADD_ALBUM = 4;
 private static final int LIST_SONGS_ON_ALBUM = 5;
 private static final int UPDATE_SONG_PRICE = 6;

 /* private instance variables */

 // Inventory all the albums carried by the store
 private Map<String,Album> albums = new HashMap<String,Album>();

 // Inventory of all the songs carried by the store
 private ArrayList<Song> songs = new ArrayList<Song>();
}

