
Mehran Sahami Handout #45
CS 106A November 29, 2017

Assignment #7—FacePamphlet
Due: 1:30pm on Friday, December 8th

Note: No late days (free or otherwise) may be used on Assignment #7
This assignment may be done in pairs

Your Early Assignment Help (YEAH) hours: Thursday, Nov. 30th from 5:30-6:30pm in 200-002
 (which is optional, not required)

For many years, computers have been used as a ubiquitous platform for communication.
While email is perhaps still the most common medium for computer-based interaction,
social networking applications (such as Facebook, LinkedIn, and MySpace1

) have gained
immense popularity in recent years. In this vein, your job for this assignment is to create
an application that keeps track of a simple social network.

What is a Social Network?
For those of you not already familiar with social networks, a social network, in the
simplest sense, is a means of keeping track of a set of people (each of whom have a
"profile" in the social network) and the relationships (usually involving friendship)
between them. For example, let's consider a simple social network that contains four
people's profiles: Alice, Bob, and Cathy, and Don. Say now that Alice is friends with
both Bob and Don (in which case, we consider Bob and Don to automatically be friends
of Alice, reciprocally). And Cathy is also a friend of Don. Graphically, we could draw
this "network" as:

Here, each profile in the network is represented by a circle containing the name of the
profile (more formally, such circles would be called "nodes") and a friendship
relationship between two people (which, for our purposes, is always reciprocal) is shown
as a line connecting two profiles of people who are considered friends.

The Assignment
For this assignment, you will create an application that keeps tracks of the information in
such a simple social network. More specifically, your application will allow for user
profiles to be added to, deleted from, or looked-up in the social network. Moreover, for
each profile, you will keep track of the person's name associated with that profile, an
optional image that the person may wish to display with his/her profile, an optional
"current status" for the profile (which is basically just a String indicating what activity
the owner of that profile is currently engaged in), and a list of friends for each profile.

1 Facebook, LinkedIn, and MySpace are trademarks of those respective social networking sites. They are
referred to here only for eduational expository reasons. Please, don't sue me. Really, does anyone still use
MySpace?!

Alice

Bob

Don

Cathy

 – 2 –

The Program
To see how the program works, we give an example of using the program to create a
small social network. Initially, the social network starts out empty (i.e., it contains no
profiles). Below we illustrate what the application initially looks like when it is run:

Along the NORTH border of the application, is a text field entitled Name, along with three
buttons: Add, Delete, and Lookup. To create a new profile, the user would enter a name
in the Name text field and click the Add button. For example, say we entered Mehran
Sahami in the text field and clicked Add. Since there is not already a profile with the
name "Mehran Sahami" in the network, the resulting screen would look as follows:

 – 3 –

In this profile displayed above, we note five display elements of interest:
• Name: The name associated with the profile ("Mehran Sahami") is displayed

prominently in the top left corner of the display canvas. The profile name is displayed
in the color blue (though that will not be evident in this black and white handout).

• Image: Although there is currently no image associated with this profile, we can see
that there is space available to display a picture immediately under the name of the
profile.

• Status: Under the area for the image, the current status of the person with this profile
is displayed. Since a newly created profile does not have a status yet set, the display
simply shows the text "No current status".

• Friends: To the right of the profile's name, there is the header text "Friends:", and
space available under this text to list the friends of this profile. Again, since we have
just created a new profile, there are no friends yet associated with it, so there are no
entries listed under the "Friends:" header.

• Application Message: Centered near the bottom of the display canvas is a message
from the application ("New profile created") letting us know that a new profile was
just created (which is the profile currently being displayed).

Changing Status
Whenever we have a profile displayed in the canvas display area (we refer to this as the
current profile), the interactors along the WEST border of the application can be used to
make updates to the current profile. These interactors include text fields and associated
buttons to: Change Status, Change Picture, and Add Friend. For example, we can
change the status of the current profile above by entering the text coding like a fiend in the
text field and clicking Change Status (or we could simply have pressed the Enter key
after typing the in the respective text field). The display updates as follows:

 – 4 –

In the screen above we see that the status text associated with the current profile has been
changed to the text "Mehran Sahami is coding like a fiend". Moreover, the Application
Message at the bottom of the display canvas has also been changed to reflect the last
action taken, namely "Status updated to coding like a fiend".

Changing Picture
We can now update the image associated with the current profile by entering the name of
a valid image file (in this case, MehranS.jpg) in the text field associated with the Change
Picture button and pressing the Enter key (or clicking the Change Picture button).
The display updates as follows:

The image area in the current profile now displays (a scaled version of) the image from
the file MehranS.jpg and the Application Message at the bottom of the display canvas has
once again been changed to reflect the last action taken, namely "Picture updated".

Adding Friends
Now, let's add another profile for Julie Zelenski (another intrepid faculty member in the
Computer Science department) to the social network so that we can show an example of
adding a friend to a profile. In the Name text field at the top of the screen, we enter the
text Julie Zelenski and click Add. The display now shows the newly created profile
(shown on the next page). Note that although a new profile was created for Julie (which
has no image associated with it and no current status), the previous values we entered in
the text fields for status (coding like a fiend) and image (MehranS.jpg) are still there
simply because the text fields were never cleared. It's important to remember that the
values in the text fields do not reflect what is in the current profile we are looking at –
rather these fields are simply interactors that allow us to update the values in a profile,
and old values entered in these text fields need not be cleared in the program (although
this would be a simple extension to add to the program, if you were so inclined).

 – 5 –

Since Julie likes to maintain her privacy, she may choose to neither update her image nor
her status. But, being the friendly person that she is, she chooses to add Mehran as a
friend. This is done by entering the profile name Mehran Sahami in the text field
immediately above the Add Friend button and then either clicking the button or pressing
the Enter key. After this is done, the display is updated as follows:

In the picture above, we see that Mehran Sahami has been added to the list of friends that
Julie has, and the Application Message reads "Mehran Sahami added as a friend."

 – 6 –

Looking-up Profiles
Recalling that all friendships are reciprocal (i.e., if Julie has Mehran as a friend, then
Mehran must also have Julie as a friend), we go to lookup Mehran's profile. This is
accomplished by entering Mehran Sahami in the Name text field in the NORTH region of
the application and clicking Lookup. The display then looks as follows:

Here we find that Mehran's profile was updated to have Julie as a friend at the same time
that Mehran was added as a friend of Julie in the previous interaction. In this way, the
application ensures that all friendships are reciprocal – whenever a friend X is added to a
profile Y, then not only is X is added as a friend of Y, but Y should also be added as a
friend of X at the same time.

Deleting Profiles
Now let's say that we decide to delete Julie's profile from the social network. We can
accomplish this by entering the profile name Julie Zelenski in the text field entitled Name
(in the NORTH border region) and clicking the Delete button. After this is done, the
display is updated as shown in the next page. We see in the picture below that after we
delete a profile, the current profile being displayed is no longer shown (no matter whose
profile that was), and the Application Message simply reports that "Profile of Julie
Zelenski deleted".

 – 7 –

Not only has Julie's profile been removed from the social network, but the profile of all
members of the social network that had Julie as a friend must also be updated to remove
Julie from their list of friends (since it is not possible to be friends with a non-existent
profile). So, if we lookup Mehran's profile again by entering Mehran Sahami in the text
field entitled Name (in the NORTH border region) and click the Lookup button, the display
will look as follows:

Note that Julie is no longer listed as one of Mehran's friends in the display above. She
was removed from Mehran's list of friends when her profile was deleted.

 – 8 –

To verify that Julie's profile been removed from the social network, we could try to look
it up. To do this, we enter Julie Zelenski in the text field entitled Name and click the
Lookup button. The display appears as follows:

Note that when we try to lookup Julie's no-longer existent profile, the current profile that
was previously displayed is cleared and we are prompted in the Application Message that
"A profile with the name Julie Zelenski does not exist". It's important to note that when
there is no current profile being displayed (as is the case above), then the interactors in
the WEST border region have no profile to update. Thus, if we were to try to, say, change
status by entering the text sleeping in the text field and clicking the Change Status
button, the display would update as follows:

 – 9 –

As can be seen in the display above, if we try to Change Status when there is no current
profile displayed, we are simply prompted with an Application Message saying "Please
select a profile to change status". We would receive an analogous prompt (albeit with
slightly different wording) if we tried to Change Picture or Add Friend when there was no
current profile displayed.

Demo Application
Although we have described the general functionality of the FacePamphlet program
above, there is a demo application named FacePamphletDemo available in the starter
folder for the assignment that will allow you to play with the application yourself and get
a better sense for how it works. You can always refer to the workings of that demo
application if you have questions about how particular situations should be handled in
your FacePamphlet program.

The Details
Similar to the NameSurfer assignment, the FacePamphlet program is broken down into
several separate class files, as follows:

• FacePamphlet—This is the main program class that ties together the application. It
has the responsibility for creating the other objects and for responding to the interactors
in the program.

• FacePamphletConstants—This interface is provided for you and defines a set of
constants that you can use in the rest of the program simply by having your classes
implement the FacePamphletConstants interface, as they do in the starter files.

• FacePamphletProfile—This class should encapsulate all the information for a single
profile in the social network. Given a FacePamphletProfile object, you can find out
that profile's name, associated image (or lack thereof), associated status (or lack
thereof), and the list of names of friends for that profile.

• FacePamphletDatabase—This class keeps track of all the profiles in the
FacePamphlet social network. Note that this class is completely separate from the user
interface. It is responsible for managing profiles (adding, deleting, looking-up).

• FacePamphletCanvas—This class is a subclass of GCanvas that displays profiles as
well as Application Messages on the display canvas. Note, however, that this class
does not implement the ComponentListener interface. As a result, this canvas does
not

 need to worry about updating the display as a result of window resizing. We
figured that you got enough practice with that in the NameSurfer assignment, so you
don't need to worry about that again here (unless you'd like to add it as a program
extension).

To help you with regard to developing your program in stages, we outline some
development milestones below, along with more details regarding implementing the
functionality provided in the program.

 – 10 –

Milestone 1: Assemble the GUI interactors
As seen in the initial start-up screen of the application (shown below), there are a number
of interactors (JLabels, JTextFields, and JButtons) in both the NORTH and WEST border
regions of the application.

Similar to the NameSurfer assignment, your first milestone is simply to add the
interactors to the application window and create an implementation for the
actionPerformed method that allows you to check whether you can detect button clicks
and read what’s in the text fields. Since you've already had experience doing that in the
previous assignment, this milestone hopefully won't present many new challenges.

A few specific issues to note in the implementation of these interactors are the following:
• All text fields are TEXT_FIELD_SIZE characters wide. TEXT_FIELD_SIZE is just a

constant set in FacePamphletConstants.
• The Name text field in the NORTH region does not have any actionCommand

associated with it. In other words, pressing the Enter key in that text field should
have no effect, so you don't need to worry about that case.

• The three text fields in the WEST region do have actionCommands associated with
them. The actionCommand associated with each respective text field should be the
same as its corresponding button. For example, pressing the Enter key in the text
field next to the Change Status button should have the same effect as pressing the
Change Status button.

• If a text field is empty when its corresponding button is pressed, then nothing
should happen. For example, if the Name text field in the NORTH region has nothing
in it when the Add (or Delete, or Lookup) button is clicked (i.e., the text field's
value is the empty string ("")), then we should simply not do anything as a result of
the button click. This idea applies to all text fields in the application, and helps
prevent situations such as trying to add a profile with an empty name, or trying to
change the status of a profile to the empty string.

 – 11 –

One issue to note is that in laying out the interactors in the WEST border region, you'll
notice that there are spaces between the various text field/button pairs (for example, there
is space between the Change Status button and the text field associated with Change
Picture). These spaces should be produced by adding a JLabel with the label text
EMPTY_LABEL_TEXT (this is just a constant defined in FacePamphletConstants) at the
appropriate points when adding interactors to the WEST border region. So, your interactor
layout code will likely include two lines at various points that look something like this:

add(new JLabel(EMPTY_LABEL_TEXT), WEST);

As you did on the previous assignment, you can take the strategy of changing the
definition of the FacePamphlet class so that it extends ConsoleProgram instead of
Program, at least for the moment. You can always change it back later. Once you have
made that change, you can then use the console to record what’s happening in terms of
the interactors to make sure that you’ve got them right. For example, we provide below a
transcript of the commands used to generate the output in Figure 1, in which the user has
just completed the following actions:

1. Entered the name Mehran in the Name text field and clicked the Add button.
2. Entered the name Julie in the Name text field and clicked the Delete button.
3. Entered the name Eric in the Name text field and clicked the Lookup button.
4. Entered the text sleeping in the Change Status text field and clicked the Change

Status button.
5. Entered the text eating in the Change Status text field and pressed the Enter key.
6. Entered the text StanfordLogo.jpg in the Change Picture text field and clicked

the Change Picture button.
7. Entered the text MehranS.jpg in the Change Picture text field and pressed the

Enter key.
8. Entered the text Julie in the Add Friend text field and clicked the Add Friend

button.
9. Entered the text Eric in the Add Friend text field and pressed the Enter key.

Figure 1. Illustration of Milestone 1

 – 12 –

Milestone 2: Implement the FacePamphletProfile class
The starter file for the FacePamphletProfile class appears in full as Figure 2 on the
following pages. The starter file includes definitions for all of the public methods we
expect you to define. The method definitions in the starter files, however, do nothing
useful (they are just stubs), although they occasionally include a return statement that
gives back a default value of the required type. In Figure 2, for example, the getName
method always returns the empty string ("") to satisfy the requirement that the method
returns an String as defined in its header line.

The FacePamphletProfile class encapsulates the information pertaining to one profile
in the social network. That information consists of four parts:
1. The name of the person with this profile, such as "Mehran Sahami" or "Julie

Zelenski"
2. The status associated with this profile. This is just a String indicating what the

person associated with the profile is currently doing. Until it is explicitly set, the
status should initially be the empty string.

3. The image associated with that profile. This is a GImage. Until it is explicitly set, this
field should initially be null since we don't initially have an image associated with a
profile.

4. The list of friends of this profile. The list of friends is simply a list of the names (i.e.,
list of Strings) that are friends with this profile. This list starts empty. The data
structure you use to keep track of this list is left up to you.

The last method in the starter implementation of FacePamphletProfile is a toString
method whose role is to return a human-readable representation of the data stored in the
profile. The general form of the string returned by this method is:

name (status): comma separated list of friend names

For example, if the variable profile contains the FacePamphletProfile data of a
profile with name "Alice" whose status is "coding" and who has friends named Don,
Chelsea, and Bob, then profile.toString() would return the string:

"Alice (coding): Don, Chelsea, Bob"

The toString method will be useful as you continue to develop your program in stages.

Note that in your implementation of the FacePamphletProfile, you should not be
changing the parameters or return types for any of the public methods provided in the
class. You may define additional private methods (i.e., methods that cannot be called
from outside the class) if they help you decompose your implementation of the other
methods in the FacePamphletProfile class.

 – 13 –

Figure 2. Starter file for the FacePamphletProfile class
/*
 * File: FacePamphletProfile.java
 * ------------------------------
 * This class keeps track of all the information for one profile
 * in the FacePamphlet social network. Each profile contains a
 * name, an image (which may not always be set), a status (what
 * the person is currently doing, which may not always be set),
 * and a list of friends.
 */

import acm.graphics.*;
import java.util.*;

public class FacePamphletProfile implements FacePamphletConstants {

 /**
 * Constructor
 * This method takes care of any initialization needed for
 * the profile.
 */
 public FacePamphletProfile(String name) {
 // You fill this in
 }

 /** This method returns the name associated with the profile. */
 public String getName() {
 // You fill this in. Currently always returns the empty string.
 return "";
 }

 /** This method returns the image associated with the profile.
 * If there is no image associated with the profile, the method
 * returns null. */
 public GImage getImage() {
 // You fill this in. Currently always returns null.
 return null;
 }

 /** This method sets the image associated with the profile. */
 public void setImage(GImage image) {
 // You fill this in
 }

 /** This method returns the status associated with the profile.
 * If there is no status associated with the profile, the method
 * returns the empty string ("").
 */
 public String getStatus() {
 // You fill this in. Currently always returns the empty string.
 return "";
 }

 /** This method sets the status associated with the profile. */
 public void setStatus(String status) {
 // You fill this in
 }

 – 14 –

 /** This method adds the named friend to this profile's list of
 * friends. It returns true if the friend's name was not already
 * in the list of friends for this profile (and the name is added
 * to the list). The method returns false if the given friend name
 * was already in the list of friends for this profile (in which
 * case, the given friend name is not added to the list of friends
 * a second time.)
 */
 public boolean addFriend(String friend) {
 // You fill this in. Currently always returns true.
 return true;
 }

 /** This method removes the named friend from this profile's list
 * of friends. It returns true if the friend's name was in the
 * list of friends for this profile (and the name was removed from
 * the list). The method returns false if the given friend name
 * was not in the list of friends for this profile (in which case,
 * the given friend name could not be removed.)
 */
 public boolean removeFriend(String friend) {
 // You fill this in. Currently always returns false.
 return false;
 }

 /** This method returns an iterator over the list of friends
 * associated with the profile.
 */
 public Iterator<String> getFriends() {
 // You fill this in. Currently always returns null.
 return null;
 }

 /** This method returns a string representation of the profile.
 * This string is of the form: "name (status): list of friends",
 * where name and status are set accordingly and the list of
 * friends is a comma separated list of the names of all of the
 * friends in this profile.
 *
 * For example, in a profile with name "Alice" whose status is
 * "coding" and who has friends Don, Chelsea, and Bob, this method
 * would return the string: "Alice (coding): Don, Chelsea, Bob"
 */
 public String toString() {
 // You fill this in. Currently always returns the empty string.
 return "";
 }

}

 – 15 –

Milestone 3: Implement the FacePamphletDatabase class
After you have defined the class FacePamphletProfile, you are ready to implement the
FacePamphletDatabase class. The starter file for the FacePamphletDatabase class
appears in full as Figure 3 on the following pages. As with the other files supplied with
this assignment, the starter file includes definitions for all of the public methods we
expect you to define.

The FacePamphletDatabase class is used to keep track of all the profiles in the social
network. The class which contains five public entries:

• A constructor that has no parameters. You can use this to perform any initialization

you may need for the database. Note: depending on how you implement the database,
it is entirely possible that your constructor may not need to do anything. It's perfectly
fine if that's the case.

• An addProfile method that is passed a FacePamphletProfile, and is responsible
for adding that profile to the database. Note that profile names are unique
identifiers for profiles in the database

• A getProfile method that takes a name, looks it up in the database of profiles, and
returns the FacePamphletProfile with that name, or null if there is no profile with
that name.

. In other words, no two profiles in the
database should have the same name and the name associated with a profile will never
change. If a client were to call the addProfile method with a profile that has the
same name as an already existing profile in the database, then the existing profile
should be replaced by the new profile. Depending on what data structure you use to
keep track of the database, this behavior may actually be quite easy to implement.
Please note: the behavior of replacing an existing profile with a new one that has the
same name is the behavior defined for the addProfile method of the
FacePamphletDatabase class (just to be precise about what should happen in that
case), but your program will likely not actually make calls to the addProfile method
with a profile that has the same name as an existing profile in the database. Rather,
your FacePamphlet program will eventually not actually allow the user to create a
new profile with the same name as an existing profile – this behavior is explained in
more detail later in this handout (see the Adding a Profile section on page 26).

• A deleteProfile method that takes a profile name, and deletes the profile with that
name from the profile database. Note that when we delete a profile from the database,
we not only delete the profile itself, but we also update all other profiles in the
database so as to remove the deleted profile's name from any friends lists in other
profiles

• A containsProfile method that takes a profile name, and returns true if there is a
profile with that name in the database. Otherwise, it returns false.

. In this way, we ensure that someone cannot be friends with a person who
does not have a profile in the database.

The code for this part of the assignment is not particularly difficult. The challenging part
lies in figuring out how you want to represent the data so that you can implement the
methods above as simply and as efficiently as possible.

 – 16 –

Figure 3. Starter file for the FacePamphletDatabase class
/*
 * File: FacePamphletDatabase.java
 * -------------------------------
 * This class keeps track of the profiles of all users in the
 * FacePamphlet application. Note that profile names are case
 * sensitive, so that "ALICE" and "alice" are NOT the same name.
 */

import java.util.*;

public class FacePamphletDatabase implements FacePamphletConstants {

 /** Constructor
 * This method takes care of any initialization needed for
 * the database. */
 public FacePamphletDatabase() {
 // You fill this in
 }

 /** This method adds the given profile to the database. If the
 * name associated with the profile is the same as an existing
 * name in the database, the existing profile is replaced by
 * the new profile passed in. */
 public void addProfile(FacePamphletProfile profile) {
 // You fill this in
 }

 /** This method returns the profile associated with the given name
 * in the database. If there is no profile in the database with
 * the given name, the method returns null. */
 public FacePamphletProfile getProfile(String name) {
 // You fill this in. Currently always returns null.
 return null;
 }

 /** This method removes the profile associated with the given name
 * from the database. It also updates the list of friends of all
 * other profiles in the database to make sure that this name is
 * removed from the list of friends of any other profile.
 *
 * If there is no profile in the database with the given name, then
 * the database is unchanged after calling this method. */
 public void deleteProfile(String name) {
 // You fill this in
 }

 /**
 * This method returns true if there is a profile in the database
 * that has the given name. It returns false otherwise. */
 public boolean containsProfile(String name) {
 // You fill this in. Currently always returns false.
 return false;
 }
}

 – 17 –

Note that in your implementation of the FacePamphletDatabase, you should not be
changing the parameters or return types for any of the public methods provided in the
class. You may define additional private methods (i.e., methods that cannot be called
from outside the class) if they help you decompose your implementation of the other
methods in the FacePamphletDatabase class.

To test this part of the program, you can add code to the FacePamphlet program so that it
creates the FacePamphletDatabase and then change the code for the Add, Delete, and
Lookup button handlers as follows:

• Entering a name in the Name text field and clicking the Add button looks up the

current name in the database to see if a profile with that name already exists. If the
name does not exist, then it adds a new profile to the database and prints out "Add:
new profile: " followed by the string version of the profile (using the toString
method of the FacePamphletProfile). If the profile name already exists in the
database, then it prints out the fact that the profile with that name already exists
followed by the string representation of the profile.

• Entering a name in the Name text field and clicking the Delete button looks up the
current name in the database to see if it exists. If the name does exist, then it deletes
the profile with that name from the database and prints out that the profile was
deleted. If the profile name does not exist in the database, then it simply prints out
that a profile with the given name does not exist.

• Entering a name in the Name text field and clicking the Lookup button looks up the
current name in the database to see if it exists. If the name does exist, then prints out
"Lookup: " followed by the string version of the profile. If the name does not exist,
then it prints out that a profile with the given name does not exist.

A sample run of this milestone is shown in Figure 4 (on the next page), where the user
has just completed the sequence of actions given below. (Note that your text messages
need not correspond exactly to those shown in the sample run here, as long as you can
still verify that your program is working properly.)

1. Entered the name Mehran in the Name text field and clicked the Add button.
2. Entered the name Julie in the Name text field and clicked the Add button.
3. Again, entered the name Mehran in the Name text field and clicked the Add button.
4. Entered the name Julie in the Name text field and clicked the Delete button.
5. With the name Julie still in the Name text field, clicked the Delete button again.
6. Entered the name Mehran in the Name text field and clicked the Lookup button.
7. Entered the name Julie in the Name text field and clicked the Lookup button.

 – 18 –

Figure 4. Illustration of Milestone 3

Milestone 4: Implement functionality for Change Status, Change Picture, and Add
Friend buttons
The next step in the process is to complete more of the implementation of the
FacePamphlet class, namely the functionality for the Change Status, Change Picture,
and Add Friend buttons. The main issue to remember here is that these buttons effect
the current profile, if there is one. As a result, one of the first things you should think
about in implementing this milestone is how you will keep track of the current profile in
the application. To help introduce the notion of the current profile, you might want to
update the code for the Add, Delete, and Lookup button handlers so that:
• Whenever a new profile is added, the current profile is set to be the newly added

profile. If the user tried to add a profile with the name of an existing profile, then
the existing profile with that name is set to be the current profile (this is similar to
the case below where the users simply looks up an existing profile).

• Whenever a profile is deleted (whether or not the profile to be deleted exists in the
database), there is no longer a current profile (regardless of what the current profile
previously was).

• Whenever the user lookups up a profile by name, the current profile is set to be the
profile that the user looked up, if it exists in the database. If a profile with that
name does not exist in the database, then there is no longer a current profile
(regardless of what the current profile previously was).

Once you have a notion of a current profile implemented, then you are ready to actually
implement the functionality for the Change Status, Change Picture, and Add Friend
buttons.

 – 19 –

Implementing Change Status
If the user enters some text in the text field associated with the Change Status button
and either presses the Change Status button or hits Enter, the application should update
as follows:

• If there is a current profile, then the status for that profile should be updated to the
text entered, and you can just print out a message to that effect.

• If there is no current profile, then you should simply prompt the user to select a
profile to change the status of (and there should be no changes to any of the profiles
in the database).

Implementing Change Picture
If the user enters some text in the text field associated with the Change Picture button
and either presses the Change Picture button or hits Enter, the application should
update as follows:

• If there is a current profile, then we need to see if the we can create a GImage with

the filename of the text entered in the text field. Checking to see if a valid image
file exists can be accomplished using the code fragment below (where filename is
a String containing the name of the image file we are trying to open):

 GImage image = null;
 try {
 image = new GImage(filename);
 } catch (ErrorException ex) {
 // Code that is executed if the filename cannot be opened.
 }

Note in the code fragment above that the variable image will still have the value
null if we were unable to open the image file with the given filename. Otherwise,
the value of the variable image will be a valid GImage object (whose value will not
be null).

If we obtained a valid GImage, then the image for the current profile should be
updated to this image, and you can print out a message to that effect (although you
won't be able to display the actual image for now).

• If there is no current profile, then you should simply prompt the user to select a
profile to change the image of (and there should be no changes to any of the profiles
in the database).

In the starter bundle for this assignment we have provided you with an images folder that
contains a number of images (of some CS faculty as well as a couple Stanford logos) that
you can use for this assignment. Of course, you can feel free to use your own image files
as well (as long as they are in GIF or JPG format).

 – 20 –

Implementing Add Friend
If the user enters some text in the text field associated with the Add Friend button and
either presses the Add Friend button or hits Enter, the application should update as
follows:

• If there is a current profile, then we need to see if the name entered in the text field

is the name of a valid profile in the database. If it is, then we try to add the named
friend to the list of friends for the current profile. If the named friend already exists
in the list of friends for the current profile, then we simply write out a message that
such a friend already exists. If that named friend does not previously exist in the list
of friends (i.e., it was successfully added to the list of friends for the current
profile), then (recalling that friendships are reciprocal) we also need to update the
profile of the named friend to add the name of the current profile to its list of
friends. For example, if the current profile was "Mehran" and we tried to add as a
friend "Julie" (which, say, is the name of valid profile in the database, which is not
already a friend of Mehran), then we should add Julie as a friend of Mehran and also
add Mehran as a friend of Julie.

• If the name entered in the Add Friend text field is not a valid profile in the system,

we should just print out a message to that effect.

• If there is no current profile, then you should simply prompt the user to select a

profile to add a friend to (and there should be no changes to any of the profiles in
the database).

To show one possible example of the interactions at this milestone, we show a sample run
in Figure 5 on the next page, where the user has just completed the sequence of actions
given below. (Note that your text messages don't need to correspond exactly to those
shown here, but you should be able to get the idea of what profile, if any, is the current
profile at any given time, as well as the updates that are made to it.)

1. Entered the name Mehran in the Name text field and clicked the Add button. Note
that at this point the current profile is set to Mehran's profile.

2. Entered the text sleeping in the Change Status text field and clicked the Change
Status button.

3. Entered the text MehranS.jpg in the Change Picture text field and clicked the
Change Picture button.

4. Entered the name Julie in the Name text field and clicked the Add button. Note
that at this point the current profile is set to Julie's profile.

5. Entered the name Mehran in the Add Friend text field and clicked the Add Friend
button. Note that Julie's current profile now shows Mehran as a friend.

6. Entered the name Mehran in the Name text field and clicked the Lookup button.
Note that at this point the current profile is Mehran's profile and it now shows Julie
as friend.

 – 21 –

7. With the name Mehran still in the Name text field, we clicked the Delete button.
Note that at this point there is no current profile.

8. With the text sleeping still in the Change Status text field, we clicked the Change
Status button, and were prompted to select a profile since there is no current profile.

9. Entered the name Julie in the Name text field and clicked the Lookup button. Note
that the current profile is now set to Julie's profile, and Mehran is no longer in her
friend list since his profile was deleted previously.

Figure 5. Illustration of Milestone 4

 – 22 –

Milestone 5: Implement the FacePamphletCanvas class and complete the
implementation of the FacePamphlet class
At this point you actually have most of the functionality for keeping track of data in your
social network application. All that's left is to create the actual graphical display of
profiles, and then tie up a few loose ends to make sure you're displaying appropriate
messages to the user.

The starter code for the FacePamphletCanvas class appears in Figure 6 on the next page.
The class (which extends GCanvas) contains three public entries:

• A constructor that has no parameters. You can use this to perform any initialization

you may need for the canvas. Note: depending on how you implement the canvas, it
is entirely possible that your constructor may not need to do anything. It's perfectly
fine if that's the case.

• A showMessage method that is passed a String, and is responsible for displaying that
string as the Application Message at the bottom of the canvas. The method should
display this Application Message text centered horizontally with respect to the width
of the canvas, and the vertical baseline for the text should be located
BOTTOM_MESSAGE_MARGIN pixels up from the bottom of the canvas. The font for the
text should be set to MESSAGE_FONT. Note that BOTTOM_MESSAGE_MARGIN and
MESSAGE_FONT are simply constants defined in FacePamphletConstants. Whenever
this method is called, any previously displayed message is replaced with the new
message text that is passed in.

• A displayProfile method that is passed a FacePamphletProfile, and is
responsible for displaying the contents of that profile in the canvas, including the
profile's name, image (if any), the status of the profile (if any), and the list of friends
(if any). Whenever this method is called, all existing contents of the canvas should be
cleared (including any previously displayed profile as well as any displayed
Application Messages), and the profile passed in should be displayed. How the
various components of the profile should be displayed is discussed in more detail
below.

Important Note: The FacePamphletCanvas does not

 update the display when the
window is resized. As a result, this class does not implement the ComponentListener
interface, and there is no need to worry about window resizing in implementing this class.
We're confident that you had plenty of practice with that on the last assignment.

Note that in your implementation of the FacePamphletCanvas, you should not be
changing the parameters or return types for any of the public methods provided in the
class. You may define additional private methods (i.e., methods that cannot be called
from outside the class) if they help you decompose your implementation of the other
methods in the FacePamphletCanvas class.

 – 23 –

Figure 6. Starter file for the FacePamphletCanvas class
/*
 * File: FacePamphletCanvas.java
 * -----------------------------
 * This class represents the canvas on which the profiles in the social
 * network are displayed. NOTE: This class does NOT need to update the
 * display when the window is resized.
 */

import acm.graphics.*;
import java.awt.*;
import java.util.*;

public class FacePamphletCanvas extends GCanvas
 implements FacePamphletConstants {

 /** Constructor
 * This method takes care of any initialization needed for
 * the display
 */
 public FacePamphletCanvas() {
 // You fill this in
 }

 /** This method displays a message string near the bottom of the
 * canvas. Every time this method is called, the previously
 * displayed message (if any) is replaced by the new message text
 * passed in.
 */
 public void showMessage(String msg) {
 // You fill this in
 }

 /** This method displays the given profile on the canvas. The
 * canvas is first cleared of all existing items (including
 * messages displayed near the bottom of the screen) and then the
 * given profile is displayed. The profile display includes the
 * name of the user from the profile, the corresponding image
 * (or an indication that an image does not exist), the status of
 * the user, and a list of the user's friends in the social network.
 */
 public void displayProfile(FacePamphletProfile profile) {
 // You fill this in
 }

}

 – 24 –

To start adding the graphical display code for profiles, you should go back to the
FacePamphlet class and change its definition so that it extends Program rather than the
temporary expedient of extending ConsoleProgram (as you may have been using during
the milestones above). At the same time, you should remove the various println calls
that allowed you to trace the operation of the interactors in the earlier milestones.

Now, you'll need to declare a FacePamphl et Canvas private instance variable in your
main FacePamphl et class:

pr i vat e FacePamphl et Canvas canvas;

You should then change the constructor of the FacePamphl et class so that it creates a
new FacePamphl et Canvas object and adds that object to the display, as follows:

 canvas = new FacePamphletCanvas();
 add(canvas);

If you run the program with only these changes, it won’t actually display anything on the
canvas until you implement the methods of the FacePamphl et Canvas class and call them
from your FacePamphl et class.

Implementing displayProfile
Much of the layout for graphical display of profiles is dictated by constant values defined
in FacePamphletConstants. Here we explain how each component of the profile
display should be set up, and refer to the sample screen below as necessary:

 – 25 –

• Name: Near the top of the display, the name associated with the profile ("Julie

Zelenski" in the example above) should be displayed in the color Blue. Horizontally,
the text should located LEFT_MARGIN pixels in from the left-hand side of the canvas.
Vertically, the top of the text (not its baseline) should be TOP_MARGIN pixels from the
top of the canvas. The font for the text should be set to PROFILE_NAME_FONT.

• Image: Although there is currently no image associated with the profile above, we
can see that there is space set aside to display an image immediately under the name
of the profile. The space for the image will always be IMAGE_WIDTH by
IMAGE_HEIGHT pixels.

If no image is associated with the profile then a rectangle of the dimensions of the
image size should be drawn. Horizontally, this rectangle should be located
LEFT_MARGIN pixels in from the left-hand side of the canvas. Vertically, the top of
the rectangle should be should be IMAGE_MARGIN pixels below the baseline of the
profile name text. Centered (both horizontally and vertically) within this rectangle
should be the text "No Image" in the font PROFILE_IMAGE_FONT.

If an image is associated with the profile then the image should be displayed (in the
same location as the rectangle described above). The image should be scaled so that
it displays with IMAGE_WIDTH by IMAGE_HEIGHT pixels. The scale method of
GImage should be useful to make image display with the appropriate size.

• Status: Under the area for the image, the current status of the person with this profile
should be displayed (Julie's status is "running" in the example above). If the profile
currently has no status (i.e., it has an empty status string), the text "No current status"
should be displayed. If the profile does have a status, the status text should have the
name of the profile followed by the word "is" and then the status text for the profile.
In any case, the line describing the profile's status should be located horizontally
LEFT_MARGIN pixels in from the left-hand side of the canvas. Vertically, the top of
the text (not its baseline) should be located STATUS_MARGIN pixels below the bottom
of the image. The font for the text should be set to PROFILE_STATUS_FONT.

• Friends: To the right of the profile's name, there is the header text "Friends:", and the
names of the friends of this profile (e.g., Mehran Sahami, Bob Plummer, and Eric
Roberts) are listed below. The start of the header text "Friends:" should be
horizontally located at the midpoint of width of the canvas. Vertically, the baseline
for this text should be the same as the top of the image area. The "Friends:" header
text should be displayed in the font PROFILE_FRIEND_LABEL_FONT. Immediately
below the header, the friends of this profile should be listed sequentially, one per line,
with the same horizontal location as the "Friends:" header text. You can use the
getHeight() method of GLabel to determine how to vertically space out the list of
friends to get one friend per line. The friend names should be displayed in the font
PROFILE_FRIEND_FONT.

 – 26 –

Note that you don't need to worry about long friend lists that may overwrite a long
status message that the profile may have. This might make for an interesting
extension, but is certainly not something you need to worry about for this assignment.

• Application Message: As described previously (but repeated here for completeness)
the Application Message text ("Displaying Julie Zelenski" in the example above)
should be centered with respect to the width of the canvas, and the baseline for the
text should be located BOTTOM_MESSAGE_MARGIN pixels up from the bottom of the
canvas. The font for the text should be set to MESSAGE_FONT.

To initally work on implementing displayProfile it might be easiest to simply put a
single call to this method (of the canvas) in the code that where you add a new profile to
the social network. In this way, when you start your application, you can simply try
adding the first profile and see if things display correctly (at least for the initial empty
profile). Once you get that working then you can wire up the rest of your program.

Finishing Up
In finishing up the program, you need to make calls at appropriate times to
displayProfile and showMessage in your FacePamphlet class. Below we outline the
behavior you should produce in your application. If you have any questions, you can
always refere to the demo application to see how various situations should be handled.

• Adding a Profile

When a new profile is being added you should see if a profile with that name already
exists. If it does, you should display the existing profile and give the user the message
"A profile with the name <name> already exists". If the profile does not already
exist, you should display the newly created profile and give the user the message
"New profile created".

• Deleting a Profile
When a profile is being deleted you should see if a profile with that name exists. If it
does, you should delete the profile, clear any existing profile from the display, and
give the user the message "Profile of <name> deleted". If the profile does not exist,
you should clear any existing profile from the display, and give the user the message
"A profile with the name <name> does not exist".

• Looking up a Profile
When a profile is being looked up you should see if a profile with that name exists. If
it does, you should display the profile, and give the user the message "Displaying
<name>". If the profile does not exist, you should clear any existing profile from the
display, and give the user the message "A profile with the name <name> does not
exist".

 – 27 –

• Changing Status
When the status for a profile is being changed, you should determine if there is a
current profile. If no current profile exists, you should just give the user the message
"Please select a profile to change status". If there is a current profile, you should
update its status, redisplay the profile (to show the changed status), and give the user
the message "Status updated to <status>".

• Changing Picture
When the picture for a profile is being changed, you should determine if there is a
current profile. If no current profile exists, you should just give the user the message
"Please select a profile to change picture". If there is a current profile, you should see
if the filename given for the picture contains a valid image, and if it does, you should
add the image to the profile, redisplay the current profile (to show the new image),
and give the user the message "Picture updated". If the given filename could not be
opened, you should just give the user the message "Unable to open image file:
<filename>". In that case, the image associated with the profile is unchanged.

• Adding Friend
When a friend is being added to a profile, you should determine if there is a current
profile. If no current profile exists, you should just give the user the message "Please
select a profile to add friend". If there is a current profile, you should see if the given
friend name is the name for a valid profile in the social network. If the name is valid
and the current profile does not already have that person as a friend, then you should
update the friend list for both the current profile and the named friend, redisplay the
current profile (to show the addition of the friend), and give the user the message
"<friend name> added as a friend". If the named friend is already a friend of the
current profile, you should just display the message "<name of current profile>
already has <friend name> as a friend." If the named friend does not have a profile in
the social network, then you should simply display the message "<friend name> does
not exist."

Congratulations! Once you've gotten this working, you've just finished implementing
your very own social network application.

 – 28 –

EXTRA CREDIT EXTENSION: Loading and Saving social networks from a file
While it is pretty exciting to have created a social networking application, there are still a
lot of things that you could do to make this program more interesting. One of the most
useful extensions you could add to your social network is the ability to load and save the
contents of the social network to a file, so that you don't need to recreate the whole
network from scratch every time you run your application. Since this is a particularly
useful extension, we outline some steps below to guide you in adding such an extension.
Note that despite the detailed comments below, adding the ability to load/save
networks is an optional extension for extra credit, and is NOT a required part of the
assignment

. Still, for those of you who have the time and inclination, we would suggest
this as the first extension to try to add to your program. And, if you feel inclined to add
further extensions, we give you some additional extension ideas at the end of this
handout. As with all assignments, if you do decide to add extensions, make sure to
submit two versions of your program (the basic version and extended version).

Note that in extended versions of the program it is fine to change the public methods in
the FacePamphletProfile, FacePamphletDatabase, and FacePamphletCanvas classes
if it is necessary to implement your extensions. But remember that your basic version
should not include any such changes.

Adding interactors to support Load/Save functionality
The first step in extending your program to support Load/Save functions it to augment the
user interface with additional interactors that allow the user to specify the name of the file
for the social network to be Loaded from or Saved to. This is most easily accomplished
by adding a new text field (along with an appropriate label) in the NORTH region followed
by two buttons for Load and Save respectively, as indicated in the interface below:

 – 29 –

Note that you should not allow a user to Load/Save a file with the empty string ("") as a
file name. In other words, if the File text field is empty, you should simply ignore clicks
on the Load and Save buttons (in the same way that users cannot create a profile that has
the empty string as a name).

Loading a network
When the user enters a file name in the text field labeled File and presses the Load button,
you should attempt to load (i.e., read) a file with the given name that contains all the data
for an entire social network. Note that you will likely need to add a public method to the
FacePamphletDatabase class that is responsible for reading a data file and storing its
contents. And remember to add:

import java.io.*;

to any class where you are doing file operations. Your program should first attempt to see
if the file specified by the user exists. If it does not, the program should not do anything to
the existing social network, and should simply report (as an Application Message) that it
was "Unable to open file <filename>". If the file does exist, you should clear all the
contents (profiles) from the current social network and then load a new network based on
the contents of the file. You can assume that the input file is properly formatted (i.e., you
don't need to do any error checking on the contents of the file, unless you really want to).
After you load the data for the new social network, you should clear the current profile
display, and simply display the Application Message "Loaded file <filename>".

Social network file format
The data file containing the specification of the social network starts with a line that
contains the total number of profiles in the network. This is followed by the contents of
each profile in the network, formatted as follows:

Profile name
Name of image file for profile (this will be a blank line if there is no image)
Status of the profile (this will be a blank line if there is no current status)
The names of the friends of this profile (listed one name per line, if any)
A blank line denoting the end of this profile (to separate it from the next profile)

A sample input file named sample-network.txt (which is also provided in the starter
project for FacePamphlet) is shown at the top of the next page. This file represents a
simple social network containing four profiles, named "Julie Zelenski", "Mehran
Sahami", "Nick Parlante" and "Eric Roberts". Eric Roberts is friends with both Julie
Zelenski and Mehran Sahami, and there are no other friendships in the network.

Note that in the example file below, we also list comments in bold italic font that explain
each line in the file. These comments would not

 actually appear in the data file.

You can assume that the names of any image files in the data file that you are loading are
refering to valid image files that you can display.

 – 30 –

File: sample-network.txt

Explanation of lines in data file
4 ← There are 4 profiles in this network
Julie Zelenski ← Name of the first profile is "Julie Zelenski"
JulieZ.jpg ← Julie Zelenski's profile has image file "JulieZ.jpg"

 ← Julie Zelenski's profile does not have its Status set
Eric Roberts ← Julie Zelenski is friends with Eric Roberts

 ← Blank line denoting end of this profile
Mehran Sahami ← Name of the next profile is "Mehran Sahami"
MehranS.jpg ← Mehran Sahami's profile has image file "MehranS.jpg"
coding like a fiend ← Mehran Sahami's status is "coding like a fiend"
Eric Roberts ← Mehran Sahami is friends with Eric Roberts

 ← Blank line denoting end of this profile
Nick Parlante ← Name of the next profile is "Nick Parlante"
 ← Nick Parlante's profile does not have an image
 ← Nick Parlante's profile does not have its Status set
 ← Blank line at end of profile (Note: Nick has no friends)
Eric Roberts ← Name of the next profile is "Eric Roberts"
 ← Eric Roberts' profile does not have an image
working on another book ← Eric Roberts' status is "working on another book"
Mehran Sahami ← Eric Roberts is friends with Mehran Sahami
Julie Zelenski ← Eric Roberts is friends with Julie Zelenski

 ← Blank line denoting end of this profile

Saving a network
When the user enters a file name in the text field labeled File and presses the Save button,
you should save (i.e., write) to a file the data for the entire current social network.
Similarly to the case of Loading, you will likely need to add a public method to the
FacePamphletDatabase class that is responsible for saving a data file. You should write
out a data file that matches the file format described above. After you save the data for
the current social network, you should display the Application Message "Saved file
<filename>". You need not clear the current profile being displayed in this case.

Note that other than the issue of actually writing out the data file, implementing the Save
functionality has some (small) implications for other changes that are needed in your
program. Specifically, in the basic version of FacePamphlet, when a user entered the
name of an image file to display, you likely only stored the actual GImage corresponding
to that image in the FacePamphletProfile object (and not the corresponding file name
entered by the user). In order to support Saving profiles, you will now need to modify
your program to also store the name of the image file (in addition to the actual GImage) in
a FacePamphletProfile. This may require adding additional “getter” and “setter”
methods to the FacePamphletProfile class. Storing the name of the image file will
enable you to write it out to the data file when the user saves the social network.

As a side note, when writing a data file, you can throw a new ErrorException in the
case where any writing operations fail (say, when you catch an IOException). To use
ErrorException, remember to import the following package in your code:

import acm.util.*;

4
Julie Zelenski
JulieZ.jpg

Eric Roberts

Mehran Sahami
MehranS.jpg
coding like a fiend
Eric Roberts

Nick Parlante

Eric Roberts

working on another book
Mehran Sahami
Julie Zelenski

 – 31 –

If you would like to add even more extensions to your program after getting the
Load/Save extended functionality working, there are several suggestions for additional
extensions below. And, of course, if you do add further extensions, feel free to change
the format of the data file for Loading/Saving social networks as needed in order to allow
you to save additional information relevant to your extensions.

Additional extension ideas
Here are some additional ideas for ways to extend your FacePamphlet program:

• Keep track of additional information for each profile. The current profile only keeps
track of a name, image, status and a list of friends. In real social networks, there is
much more information about users that is kept track of in profiles (e.g., age, gender,
where they may have gone to school, etc.) Use your imagination. The more
challenging issue will be how you appropriately display this additional information
graphically in the profile display.

• Support for groups. Many social networking applications allow for keeping track of
"groups" (or "communities") that profiles can belong to. In many ways, being a
member of a group is similar to having that group as a "friend"—a "group" has a list of
members (similar to a list of friends for a profile) and each profile can be a member of
many groups (much in the same way that a profile can have many friends). Adding
support for groups would help make your social network more realistic and may not
actually require too much work if you can leverage some of the conceptual similarities
with respect to "groups" being like "friends".

• Finding friends of friends. Another interesting aspect of social networks is not only
keeping track of how many people you have as friends, but also how quickly that
number grows as you consider all the friends of your friends, and their friends, and so
on. Displaying these sorts of properties of the social network are neat features that
show just how few degrees of separtion there are between people. Along these same
lines, it would be interesting to find and display "friendship chains" that show the
shortest sequence of friendship relations that create a chain from one profile to another.
For example, if X is a friend of Y, and Y is a friend of Z, then a friendship chain exist
that goes: X → Y → Z. Finding longer chains can be a fun and challenging problem.

• Adjust the profile display as the application window is resized. You got some practice
with this already with the NameSurfer application and it would be an interesting
extension to apply some of those same ideas here. The more challenging issue is how
you would decide to change font sizes and the size of the image as the display size
grew or shrank.

• Go nuts! There's really no shortage of ways that you could extend your FacePamphlet
application. In fact, whole companies have been started based on creating a social
network application with some cool new features. And if you do end up starting the
next multi-billion dollar company based on social networking, just remember where it
all started... CS106A!

