
YOUR EARLY ASSIGNMENT HELP | ASSIGNMENT SEVEN

YEAH! Hours: FacePamphlet
Brahm Capoor <brahm@stanford.edu>
Garrick Fernandez <gfaerr@stanford.edu>

Due Friday, Mar. 11 at 5PM PST (No late days!)

Add friends! Change status! Pics!

We can lookup, add, or delete users!

We have to display the
info in some nice way.

This is the client.

Why FacePamphlet?
A fun sneak peek at what Java can do in the real world (the internet)!

Nailing down the concepts introduced in the latter half of the course: data
structures, classes, and interactions between classes (client-server)

Further understanding large-scale programs as systems of Java classes (e.g.
NameSurfer and FacePamphlet)

As always...Common Skills
Quickly build intuition for what a problem is asking.

Learn how to draft and design good code.

Pull bits and snippets from our coding toolbox.

Anticipate edge cases and test for errors.

But first, a lecture review

Classes

Most of FacePamphlet is very similar to NameSurfer

● Check out assignment 6 YEAH slides!

● Let’s put everything you’ll need to know on a single slide.

http://web.stanford.edu/class/cs106a/handouts/YEAH6.pdf

public class Comic {

}

public class Comic {

}

String title = “Detective Comics 27”;
String author = “Bill Finger”;

Comic comic = new Comic(title, author);

for (int i = 0; i < NUM_PAGES; i++) {
GImage newPage = drawPage();
comic.addPage(newPage);

}

public class Comic {

}

String title = “Detective Comics 27”;
String author = “Bill Finger”;

Comic comic = new Comic(title, author);

for (int i = 0; i < NUM_PAGES; i++) {
GImage newPage = drawPage();
comic.addPage(newPage);

}

Comic comic = getComicFromShelf();

int numPages = comic.getNumPages();

for (int i = 0; i < numPages; i++) {
GImage page = comic.getPage(i);
displayPage(page);
waitForClick();

}

public class Comic {

private String title;
private String author;
private ArrayList <GImage> pages;

}

String title = “Detective Comics 27”;
String author = “Bill Finger”;

Comic comic = new Comic(title, author);

for (int i = 0; i < NUM_PAGES; i++) {
GImage newPage = drawPage();
comic.addPage(newPage);

}

Comic comic = getComicFromShelf();

int numPages = comic.getNumPages();

for (int i = 0; i < numPages; i++) {
GImage page = comic.getPage(i);
displayPage(page);
waitForClick();

}

public class Comic {

private String title;
private String author;
private ArrayList <GImage> pages;

public ComicBook(String title, String author) {
this.title = title;
this.author = author;
pages = new ArrayList<GImage>();

}

}

String title = “Detective Comics 27”;
String author = “Bill Finger”;

Comic comic = new Comic(title, author);

for (int i = 0; i < NUM_PAGES; i++) {
GImage newPage = drawPage();
comic.addPage(newPage);

}

Comic comic = getComicFromShelf();

int numPages = comic.getNumPages();

for (int i = 0; i < numPages; i++) {
GImage page = comic.getPage(i);
displayPage(page);
waitForClick();

}

public class Comic {

private String title;
private String author;
private ArrayList <GImage> pages;

public ComicBook(String title, String author) {
this.title = title;
this.author = author;
pages = new ArrayList<GImage>();

}

public void addPage(GImage page) {
this.pages.add(page);

}

}

String title = “Detective Comics 27”;
String author = “Bill Finger”;

Comic comic = new Comic(title, author);

for (int i = 0; i < NUM_PAGES; i++) {
GImage newPage = drawPage();
comic.addPage(newPage);

}

Comic comic = getComicFromShelf();

int numPages = comic.getNumPages();

for (int i = 0; i < numPages; i++) {
GImage page = comic.getPage(i);
displayPage(page);
waitForClick();

}

public class Comic {

private String title;
private String author;
private ArrayList <GImage> pages;

public ComicBook(String title, String author) {
this.title = title;
this.author = author;
pages = new ArrayList<GImage>();

}

public void addPage(GImage page) {
this.pages.add(page);

}

public GImage getPage(int pageNum) {
return this.pages.get(pageNum);

}

}

String title = “Detective Comics 27”;
String author = “Bill Finger”;

Comic comic = new Comic(title, author);

for (int i = 0; i < NUM_PAGES; i++) {
GImage newPage = drawPage();
comic.addPage(newPage);

}

Comic comic = getComicFromShelf();

int numPages = comic.getNumPages();

for (int i = 0; i < numPages; i++) {
GImage page = comic.getPage(i);
displayPage(page);
waitForClick();

}

public class Comic {

private String title;
private String author;
private ArrayList <GImage> pages;

public ComicBook(String title, String author) {
this.title = title;
this.author = author;
pages = new ArrayList<GImage>();

}

public void addPage(GImage page) {
this.pages.add(page);

}

public GImage getPage(int pageNum) {
return this.pages.get(pageNum);

}

public String getTitle() {...}
public String getAuthor() {...}
public int getNumPages() {...}

}

String title = “Detective Comics 27”;
String author = “Bill Finger”;

Comic comic = new Comic(title, author);

for (int i = 0; i < NUM_PAGES; i++) {
GImage newPage = drawPage();
comic.addPage(newPage);

}

Comic comic = getComicFromShelf();

int numPages = comic.getNumPages();

for (int i = 0; i < numPages; i++) {
GImage page = comic.getPage(i);
displayPage(page);
waitForClick();

}

Networking

The internet in 3 lines

The internet is a bunch of computers just yelling at each other

The internet in 3 lines

The internet is a bunch of computers just yelling at each other

The computers that yell first are clients, and the computers that yell back are servers

The internet in 3 lines

The internet is a bunch of computers just yelling at each other

The computers that yell first are clients, and the computers that yell back are servers

Every yell is made entirely of specially-formatted Strings

Brahm’s computer Facebook’s servers

Brahm’s computer Facebook’s servers

I need Brahm’s
profile picture

Brahm’s computer Facebook’s servers

I need Brahm’s
profile picture

from you

Brahm’s computer Facebook’s servers

Where did I put
that picture?

I need Brahm’s
profile picture

from you

Brahm’s computer Facebook’s servers

Here you go!

I need Brahm’s
profile picture

from you

Brahm’s computer Facebook’s servers

Here you go!

�

I need Brahm’s
profile picture

from you

Brahm’s computer Facebook’s servers

�

Here you go!

I need Brahm’s
profile picture

from you

Brahm’s computer Facebook’s servers

⚠
�

You’re not
authorized. Go

away!

I need Brahm’s
profile picture

from you

Brahm’s computer Facebook’s servers

�

Here you go!

I need Brahm’s
profile picture

from you

Here you go!

I need Brahm’s
profile picture

from you

“Here you go!”

“I need Brahm’s
profile picture

from you”

Request

Response

public class Request {

private String command;
private HashMap <String, String> params;

public Request(String command) { … } // constructor

public void addParam(String name, String val) { … }

public String getCommand() { … }

public String getParam(String name) { … }

}

/* It’s a string, but the contents of that String are up to
you. Choose something sensible/check the handout! */

Request

made by the client

Response

by the server

private static String HOST = “http://localhost:8080”;

private String makeRequest(String username) {
try {

Request r = new Request(“getStatus”);
r.addParam(“username”, username);
return SimpleClient.makeRequest(HOST, r);

} catch (IOException e) {
return null;

}
}

public void run() {
String status = makeRequest(“brahmcapoor”);

}

public String requestMade(Request req) {
String cmd = req.getCommand();
if (cmd.equals(“getStatus”)) {

String username = req.getParam(“username”);
String status = /* obfuscated for you to do */;
return status;

} // and so on...

Request

made by the client

Response

by the server

Assignment[] CS106A = new Assignment[7];

Assignment facePamphlet = CS106A[CS106a.length - 1];

// You’re so close! You’ve all crushed it so far!

A Primer: FacePamphlet

FacePamphletProfile.java
(our code!)

How do these things interact?

FacePamphletServer.java
(our code!)

And where does the internet come in?

FacePamphletClient
(our code!)

ServerTester???

THE INTERNET???

A Primer: FacePamphlet

FacePamphletClient
(our code!)

FacePamphletServer.java
(our code!)

SERVER >

< CLIENT

A Primer: FacePamphlet

FacePamphletClient
(our code!)

FacePamphletServer.java
(our code!)

SERVER >

< CLIENT

STORAGE?

There’s this idea of requests and
responses over the internet.

A Primer: FacePamphlet

FacePamphletClient
(our code!)

FacePamphletProfile.java
(our code!)

FacePamphletServer.java
(our code!)

SERVER >

< CLIENT

STORAGE?

name: Garrick

other things: blah blah
blah...

There’s this idea of requests and
responses over the internet.

The server stores all of the user
profiles in some useful way!

(Think NameSurfer)

A Primer: FacePamphlet

FacePamphletClient
(our code!)

FacePamphletProfile.java
(our code!)

FacePamphletServer.java
(our code!)

SERVER >

< CLIENT

STORAGE?

name: Garrick

other things: blah blah
blah...

Let’s see how a request/response
works.

A Primer: FacePamphlet

FacePamphletClient
(our code!)

FacePamphletProfile.java
(our code!)

FacePamphletServer.java
(our code!)

SERVER >

< CLIENT

STORAGE?

name: Garrick

other things: blah blah
blah...

First, a request is sent from the client
to the server over the internet.

A Primer: FacePamphlet

FacePamphletClient
(our code!)

FacePamphletProfile.java
(our code!)

FacePamphletServer.java
(our code!)

SERVER >

< CLIENT

STORAGE?

name: Garrick

other things: blah blah
blah...

The server receives the request
and decides what to do with it.

“Add Brahm
as G’s friend”

…….

A Primer: FacePamphlet

FacePamphletClient
(our code!)

FacePamphletProfile.java
(our code!)

FacePamphletServer.java
(our code!)

SERVER >

< CLIENT

STORAGE?

name: Garrick

other things: Brahm is a
friend!

The server *could* change internal
data to satisfy the request.

“I have to add
Brahm to Garrick’s

friends”

A Primer: FacePamphlet

FacePamphletClient
(our code!)

FacePamphletProfile.java
(our code!)

FacePamphletServer.java
(our code!)

SERVER >

< CLIENT

STORAGE?

name: Garrick

other things: Brahm is a
friend!

Then, the server sends a response
back to the user...

A Primer: FacePamphlet

FacePamphletClient
(our code!)

FacePamphletProfile.java
(our code!)

FacePamphletServer.java
(our code!)

SERVER >

< CLIENT

STORAGE?

name: Garrick

other things: Brahm is a
friend!

The client receives the response...

A Primer: FacePamphlet

FacePamphletClient
(our code!)

FacePamphletProfile.java
(our code!)

FacePamphletServer.java
(our code!)

SERVER >

< CLIENT

STORAGE?

name: Garrick

other things: Brahm is a
friend!

And updates appropriately!

A Primer: FacePamphlet

FacePamphletClient
(our code!)

FacePamphletProfile.java
(our code!)

FacePamphletServer.java
(our code!)

SERVER >

< CLIENT

STORAGE?

name: Garrick

other things: blah blah
blah...

This is a request-response pattern
between client and server.

Request/
Response

FacePamphletClient
(our code!)

FacePamphletProfile.java
(our code!)

FacePamphletServer.java
(our code!)

SERVER >

< CLIENT

STORAGE?

name: Garrick

other things: blah blah
blah...

Request/
Response`

The Full Loop: FacePamphlet
Now we have to design

what info to store...

How to handle
requests and send

responses...

How to store it...

And how to update
the (smaller) client

program accordingly!

Breaking Up the Problem
How do we break up the problem into approachable milestones?

Breaking Up the Problem
First, let’s understand how classes would be useful for solving the problem of
storing data in FacePamphlet.

Then, let’s look at how requests are sent and how to respond to them!

Last, let’s wrap back to the client and make a simple one!

Designing FacePamphletProfile
The class FacePamphletProfile is going to abstract the data we need to store
for each user in a useful way.

We need to decide on a few things to make this happen:

- What data to store, and how?
- Choosing methods to interact with objects of our class

We tell you which methods need to be implemented. You need to decide on the
structures and write the code!

Tips: FacePamphletProfile
Check out the handout! The four bits of info are:

1. The name of the person with this profile, such as "Chris Piech"
2. The status associated with this profile. This is just a String indicating what the person associated

with the profile is currently doing. It should initially be the empty string.
3. The image associated with that profile. This is a GImage. It should initially be null.
4. The list of friends of this profile. The list of friends is simply a list of the names (Strings) that are

friends with this profile. This list starts empty. The data structure you use to for this is left up to
you.

Plus a high-level diagram!

Breaking Up the Problem
First, let’s understand how classes would be useful for solving the problem of
storing data in FacePamphlet.

Then, let’s look at how requests are sent and how to respond to them!

Last, let’s wrap back to the client and make a simple one!

Earth to Mars
Requests are going to be sent to our FacePamphlet server over the internet.

For that to work, you have to be running the server. Your computer is receiving
and responding to requests. This means you have to run the server when you run
the client!

FacePamphletServer.java
(our code!)

THE
INTERN
-ET!!1!

This also means restarting
your server wipes the

profiles you made before!

Step One: Our Program is a Server
Our class, FacePamphletServer, is going to implement the interface called
SimpleServerListener. (Just think of this as a template, or series of promises
we have to follow to make our program behave like a server.)

public class FacePamphletServer extends ConsoleProgram

implements SimpleServerListener {

// Our server code here

public String requestMade(Request request) {}

}

This method is a promise of the
interface, or template. Makes sense—all

servers have to respond to requests!

Step Two: Housekeeping
We need to set up some things behind the scenes so our server knows how to
work. The port tells the server where it’s getting requests from.

public class FacePamphletServer extends ConsoleProgram

implements SimpleServerListener {

private static final int PORT = 8000;

private SimpleServer server = new SimpleServer(this, PORT);

} And we need to make
a SimpleServer!

Step Three: Fire up!
The SimpleServer we made only needs one more thing to get started. We have
to call start() from the run() method, no questions about it.

public void run() {

println("Starting server on port " + PORT);

server = new SimpleServer(this, PORT);

server.start(); // Start the server

}

Great, what does that do?
Now we have the code that’s running the server! It can receive requests.

The only thing we have to do now is respond to requests.

FacePamphletServer.java
(our code!)

THE
INTERN
-ET!!1!

public String requestMade(Request request) {} // TODO

“Add Brahm
as G’s friend”

Remember this
method? We have to

do that!

Testing: Seeing the Server
Say your port is 8000, you can go to localhost:8000/ in a web browser to
contact your server (remember, it has to be running!)

We can pass it a
command, like ping.

You’ll implement ping to return a
simple response. It’s a nice way to
make sure the server is working.

Testing: Making Commands
Everything following localhost:8000/ is a command, and “parameters” of
the command use this URL syntax: ?param=value

Using this, you could make manual commands to the server!

You’ll be implementing addProfile.
Basically, it adds a profile to

FacePamphlet.

The one “parameter” is name. And its value is Karel.

Testing: Making Commands

You’ll be implementing addProfile.
Basically, it adds a profile to

FacePamphlet.

The one “parameter” is name. And its value is Karel.

Everything following localhost:8000/ is a command, and “parameters” of
the command use this URL syntax: ?param=value

Using this, you could make manual commands to the server!

Nice
! Client se

es

the stu
ff o

n

Serve
r!

More about Requests
Cool! We know what a Request looks like in URLs and pictures. What does it
look like in code?

FacePamphletServer.java
(our code!)

“Add user
named Karel”

Let’s tear open this
envelope.

More about Requests
Cool! We know what a Request looks like in URLs and pictures. What does it
look like in code?

A Request is an object too! We don’t need to know much about it, but it does
store the command and the parameters. (What’s a good way to store those
parameters, you think??)

FacePamphletServer.java
(our code!)

“Add user
named Karel”

command: addUser

params: ...

name: Karel

... ...

You *could* code this class
with your 106A skills, but we

give it to you :)

Syntax for Requests
We now know how requests look under the hood. How do we get to that
information?

// Gets the command from a Request object

String cmd = request.getCommand();

// Gets a parameter from a Request object

// Note: You can only get parameters that exist.

// How do we know which ones are available?

String userName = request.getParam("name");

These all return
strings! Hm...

Responding to Requests
Now that we know how to access Requests, can we figure out how to respond to
them?

FacePamphletServer.java
(our code!)

“Add user
named Karel”

command: addUser

params: ...

name: Karel

... ...

What
request is
this?

Responding to Requests
Now that we know how to access Requests, can we figure out how to respond to
them?

All we have to do is look at what the command is, extract relevant
“parameters”, and then do the command.

FacePamphletServer.java
(our code!)

“Add user
named Karel”

command: addUser

params: ...

name: Karel

... ...

Ok, gotta
add a user
now. Bingo
bongo

Breaking Up the Problem
First, let’s review classes and other content brought up in lecture.

Then, let’s understand how classes would be useful for solving the problem of
storing data in FacePamphlet.

Last, let’s look at how requests are sent and how to respond to them!

There are a Couple...
There are quite a few methods you have to implement for FacePamphlet.

We won’t go over all of them, but we want you to understand how to get
“parameters” out and operate on the data in FacePamphletServer at a high
level.

- ping
- addProfile, containsProfile
- deleteProfile
- setStatus, getStatus
- setImage, getImage
- addFriend, getFriends

FacePamphletServer.java
(our code!)

STORAGE?

Remember, at a high level, these are the
commands we’re dealing with, and we’re
working in the server, receiving requests!

The spec has the commands, their
parameters, and their behavior mapped out!

Commands have different numbers and
names of parameters! Hmm...

Adding Profiles
Adding a profile means just adding it to the database.

There’s only one parameter, the name!

What do we have to do?

command: addProfile

params: ...

name: Karel

FacePamphletServer.java
(our code!)

Adding Profiles
Adding a profile means just adding it to the database.

There’s only one parameter, the name!

Idea: make a new profile corresponding to the user.

command: addProfile

params: ...

name: Karel

And store the new profile in
the server.

name: Garrick

other things: blah blah
blah...

USERThis is where we can
use the class we made.

Fetching Profiles and Setting Info
Now say we want to get a profile (or check it exists). This is used by a good
number of the commands!

If we have the name parameter, we can query the database for it.

command: setStatus

params: ...

name: Karel

status: Turning right

Server

Does the server have
an entry for Karel?

Fetching Profiles and Setting Info

command: setStatus

params: ...

name: Karel

status: Turning right

Server

If YES, we can change the info. If we designed
the class well, this part should be easy!

name: Karel

status Turning right

USER

Now say we want to get a profile (or check it exists). This is used by a good
number of the commands!

If we have the name parameter, we can query the database for it.

Fetching Profiles and Setting Info

command: setStatus

params: ...

name: Karel

status: Turning right

Server

What if NO: there is
no user Karel in the

database?

 ? ?

Now say we want to get a profile (or check it exists). This is used by a good
number of the commands!

If we have the name parameter, we can query the database for it.

Giving Good Error Messages
Sometimes, we won’t be able to find a profile in the database.

In that case, requestMade() still needs a response to send back. So let’s send
an error message! NOTE: Make sure error messages start with “Error:”

Make sure your error messages are informative! Some commands have multiple.

// requestMade() has to return a String

// If we can’t find the profile, let’s return an error

// message instead, like so:

return "Error: Database does not contain a profile with name " +

 userName;

Setting Info: Images
One catch for setting info: sometimes, we need to deal with strings and
GImages. Requests and responses are made of Strings, but the server deals
with and stores GImages. Here are some methods to help translate:

// Converts a GImage to its string representation

String SimpleServer.imageToString(GImage image)

// Converts a string representation of an image to a GImage

GImage SimpleServer.stringToImage(String str)

Add My Friends
How do we add friends? Say we have two names, corresponding to users that
want to be friends. What now?

command: addFriend

params: ...

name1: Karel

name2: Garrick

FacePamphletServer.java
(our code!)

name: Karel

friends:

USER 1

name: Garrick

friends: Brahm

USER 2

Add My Friends
How do we add friends? Say we have two names, corresponding to users that
want to be friends.

To add a friend, both users must have each other in their friends list.

command: addFriend

params: ...

name1: Karel

name2: Garrick

FacePamphletServer.java
(our code!)

name: Karel

friends: Garrick

USER 1

name: Garrick

friends: Karel, Brahm

USER 2

We have to update both profiles! A little
tricky. Also have to check that both exist,

not the same profile, etc...

Delete My Friends
What does it take to delete a user? If you look at Java documentation, you
could find a good method to delete a user from the data structure you’re
using...

But are we missing something?

command: deleteProfile

params: ...

name: Karel

FacePamphletServer.java
(our code!)

name: Karel

friends: Garrick

USER 1

name: Garrick

friends: Karel, Brahm

USER 2

Delete My Friends
What does it take to delete a user? If you look at Java documentation, you
could find a good method to delete a user from the data structure you’re
using...

But are we missing something?

command: deleteProfile

params: ...

name: Karel

FacePamphletServer.java
(our code!)

name: Karel

friends: Garrick

USER 1

name: Garrick

friends: Karel, Brahm

USER 2

Hmm… we were supposed
to delete Karel, but they’re

still Garrick’s friend!

Delete My Friends
Ok, we know the problem with deleting a user is that we also have to take
them off other users’ friend lists.

But, there could be tens or hundreds of users in FacePamphlet. How can we get
just the ones we need to edit?

command: deleteProfile

params: ...

name: Karel

FacePamphletServer.java
(our code!)

name: Karel

friends: Garrick

USER 1

name: Garrick

friends: Karel, Brahm

USER 2

Delete My Friends
Ok, we know the problem with deleting a user is that we also have to take
them off other users’ friend lists.

But, there could be tens or hundreds of users in FacePamphlet. How can we get
just the ones we need to edit?

command: deleteProfile

params: ...

name: Karel

FacePamphletServer.java
(our code!)

name: Karel

friends: Garrick

USER 1

name: Garrick

friends: Karel, Brahm

USER 2

Check it out! All of Karel’s friends
have Karel as a friend. Those are

the users we have to edit!

Don’t go over all of the users in the
database. That would be inefficient.

Breaking Up the Problem
First, let’s review classes and other content brought up in lecture.

Then, let’s understand how classes would be useful for solving the problem of
storing data in FacePamphlet.

Then, let’s look at how requests are sent and how to respond to them!

Last, let’s wrap back to the client and make a simple one!

Making the Client
The client we want you to make is a
simplified version of the client we
provide.

Old concepts: interactors,
graphics/canvas

New concepts: generating and
sending requests!

You only have to do add, delete, and lookup,
though you can do more for an extension!.

A Reminder: FacePamphlet

FacePamphletClient
(our code!)

FacePamphletProfile.java
(our code!)

FacePamphletServer.java
(our code!)

SERVER >

< CLIENT

STORAGE?

name: Garrick

other things: blah blah
blah...

Remember, in the grand scheme of
things: when the user clicks a button,

a request is sent to the server.

Client: Making Requests
We provide methods for making and sending requests. Take a look at the
pingTheServer method for clues on how to do it (HOST is a provided constant).

// Let’s prepare ourselves a new request with command "ping".

Request example = new Request("ping"); // This is in the spec!

// (If we wanted to add a parameter, this is how we’d do it)

example.addParam("key_name", "value_name");

// We are now ready to send our request

String result = SimpleClient.makeRequest(HOST, example);

Client: Making Requests
Some requests return errors—remember how we did the code in server? To react
to an error, we need a try-catch block for makeRequest().

try {

 Request myRequest = // ...make request & add params

 String response = SimpleClient.makeRequest(HOST, myRequest);

 // if we get here, the request was successful – continue on...

} catch (IOException e) {

 // if we get here, there was an error

 String errorMessage = e.getMessage();

 // Do something with errorMessage

}

Tips and Tricks
Read the documentation! It’s on the course website.

You should decompose in the server. Not everything should be in
requestMade().

When testing, you can run our versions of the server and client to help isolate
bugs.

Good Luck!

