Arrays .
Chris Piech —
CS106A, Stanford University

Changing Variable Types

int to double?

int to String?

int x = 5; int x = 5;

double xDbl = x; String xStr = “” + x
String to int? String to double?
String xStr = “5"; String xStr = “5.6";

int x = Integer.parseInt(x);

double X

7

Casting double to int

double X 5.2;
int y = (int)x;

int to char

GObject to GRect

GObject obj = getElementAt(5, 2);
GRect objRect = (GRect)obj;

int diff = ‘C'-"A’;

char next

(char)‘a’ + diff;

Double.parseDouble(xStr);

Where are we?

Karel the Robot
Java

Console Programs
Graphics Programs
Text Processing
Data Structures

Defining our own Variable Types
GUIs

Winter is Coming!

Karel Wars Eplsode VII
Revenge of the SuperKarel

An ev11 SuperKarel is threatenlng to’
dlsturb the grld world once again.

What - ‘was once a peaceful planet has
now been thrown into chaos.

By taking the tuxnRight () command

- hostage, SupetKerel has. forced all
otber Karels to turnlLeft() three times.

Thanks to Nick Troccoli for the awesome example

A Quick Review of ArrayLists

In Java, an array list 1s an abstract type used to store a
linearly ordered collection of similar data values.

When you use an array list, you specify the type ArrayList,
followed by the element type enclosed in angle brackets, as in
ArrayList<String> Or ArrayList<Integer>. In Java, such
types are called parameterized types.

Each element is identified by its position number in the list,
which 1s called its index. In Java, index numbers always
begin with 0 and therefore extend up to one less than the size
of the array list.

Operations on array lists are implemented as methods in the
ArrayList class, as shown on the next slide.

Common ArrayList methods

list.size ()
Returns the number of values in the list.

list.isEmpty ()
Returns true if the list is empty.

list.set (i, value)
Sets the i™ entry in the list to value.

list.get (1)
Returns the i™ entry in the list.

list.add (value)
Adds a new value to the end of the list.

list.add (index, value)
Inserts the value before the specified index position.

list.remove (1ndex)
Removes the value at the specified index position.

list.clear ()
Removes all values from the list.

Arrays in Java

» The Java ArraylList class 1s derived from an older, more
primitive type called an array, which 1s a collection of
individual data values with two distinguishing characteristics:

1. An array is ordered. You must be able to count off the values:
here 1s the first, here 1s the second, and so on.

2. An array is homogeneous. Every value in the array must have
the same type.

* As with array lists, the individual values in an array are called
elements, the type of those elements (which must be the same
because arrays are homogeneous) 1s called the element type,
and the number of elements 1s called the length of the array.
Each element 1s 1dentified by its position number in the array,
which 1s called its index.

Arrays have fewer capabilities

list.size ()

.1 h
Returns the number of values in the list. array.lengt

liss _AsEmpty ()
Reftutns true if the list is empty.

list.set (i, value)

- - array[i] = wvalue
Sets the i™ entry in the list to value. y[1]

list.get (1)

- : arravy|[i
Returns the it entry in the list. yli]

lis§.add(value)
Adds\a new value to the end of the list.

list.add (index, value)
Inder®s the value before the specified index position.

list.xemove (1ndex)
R es the value at the specified index position.
lisk.g£lear ()

R es all values from the list.

Why use arrays?

Arrays are built mto the Java language and offer a more
expressive selection syntax.

You can create arrays of primitive types like int and double
and therefore don’t need to use wrapper types like Integer
and Double.

It 1s much easier to create arrays of a fixed, predetermined
s1Ze.

Java makes 1t easy to initialize the elements of an array.

Many methods 1n the Java libraries take arrays as parameters
or return arrays as a result. You need to understand arrays in
order to use those methods.

What does this say?

53%+1t305)) 6*;4826)4%)4%) ;806*,;48181
60))85;1+(;:¥*8183(88)5*+,46(,;88*96*
?,;8)*+(,485) ;5*+t2:*%+(;4956*2 (5*-4) 89
8*,4069285) ;)61t8)4++;1(+9,;48081;8:8+%
1,48185;4)4851528806*81 (+9,48; (88,4 (
$734;48)4+;161;:188;%+7?;

Arrays

#majorkey of the day

A new variable type that is an object that represents an
ordered, homogeneous list of data.

— Arrays have many elements that you can access using indices

index O 1 2 3 4 5 6 7 8 9
length = 10

value | 12 |49 | -2 |26 | 5 |17 | -6 | 84 | 72| 3

| | |

element 0 element 4 element 9

Creating Arrays

type[] name = new type|length];

int[] numbers = new int[5];

index O 1 2

value | 0 | O

Java automatically initializes elements to 0.

Getting values

name| index] // get element at index

e Like Strings, indices go from 0 to the array's length - 1.

for (int 1 = 0; 1 < 7; i++) {
println(numbers[i]);

¥

println(numbers[9]); // exception
println(numbers[-1]); // exception

index 0 1 2 3 4 5 6

value 0 1

Setting values

name[index] = value; // set element at index

Setting values

name[index] = value; // set element at index

e Like Strings, indices go from 0 to the array's length - 1.

int[] numbers = new int[7];

for (int 1 = 0; i < 7; i++) {
numbers[i] = 1i;

}

numbers[8] = 2; // exception

numbers[-1] = 5; // exception

index 0 1 2 3 4 5 6

value 0 1 2 3

Practice

Q: What are the contents of numbers after executing this code?

int[] numbers = new int[8];

numbers|1l| = 3;
numbers[4] = 7;
numbers[6] = 5;

int x = numbers[1];
numbers[x] = 2;

numbers|[numbers[4]] = 9;
// @ 1 2 3 4 5 6 7
A. {0, 3, 0, 2, 7, 0, 5, 9}
B. {0, 3, 0, 0, 7, 0, 5, 0}
c. {3, 3, 5, 2, 7, 4, 5, 0}
D. {0, 3, 0, 2, 7, 6, 4, 4}

Many flavors of arrays

You can create arrays of any variable type. For example:

double[] results = new double[5];

String[] names = new String[3];

boolean|[] switches = new boolean[4];

GRect[] rects = new GRect[5];

e Java initializes each element of a new array to its default value,
which is 0 for 1int and double, “\0° for char, false for
boolean, and null for objects.

Getting “length”

Similar to a String, you can get the length of an array by saying

myArray.length
Note that there are no parentheses at the end!

Practice:

e What is the index of the last element of an array in terms
of its length?

e What is the index of the middle element of an array in
terms of its length?

Arrays V loops

Just like with Strings, we can use an array’s length, along
with its indices, to perform cool operations.

Arrays V loops

Just like with Strings, we can use an array’s length, along
with its indices, to perform cool operations.

For instance, we can efficiently initialize arrays.
int[] numbers = new int[8];
for (int i = @; i < numbers.length; i++) {

numbers[i] = 2 * 1;

index O 1 2 3 4 5 6 7

value | O 2 4 6 8 |10 | 12 | 14

Arrays V loops

Just like with Strings, we can use an array’s length, along
with its indices, to perform cool operations.

For instance, we can read in numbers from the user:

int length = readInt("# of numbers? ");

int[] numbers = new int[length];

for (int 1 = 0; i < numbers.length; i++) {
numbers[i] = readInt("Elem " + 1 + ": ");

Arrays V loops

Just like with Strings, we can use an array’s length, along
with its indices, to perform cool operations.

Try it out! sum up all of an array’s elements.

// assume that the user has created int[] numbers

int sum = 0;

for (int 1 = 9; 1 < numbers.length; i++) {
sum += numbers[i];

}

println(sum);

Annoying initialization

Sometimes, we want to hardcode the elements of an array.

int numbers = new int[7];
numbers[@] = 5;
numbers[1] = 32;
numbers[3] = 12;

// This 1s tedious!

Fancy initialization

Sometimes, we want to hardcode the elements of an array.

Luckily, Java has a special syntax for initializing arrays to
hardcoded numbers.

type[] name = { elements };

// Java infers the array length
int[] numbers = {5, 32, 12, 2, 1, -1, 9};

Limitations of Arrays

e An array’s length is fixed. You cannot resize an existing array:

int[] a = new int[4];
a.length = 10; // error

e You cannot compare arrays with == or equals :

int[] a1 = {42, -7, 1, 15};
int[] a2 = {42, -7, 1, 15};
if (a1l == a2) { ... } // false!
if (al.equals(a2)) { ... } // false!

e An array does not know how to print itself:
println(al); // [I1@98f8c4]

Array Methods to the Rescue!

e The class Arrays in package java.util has useful methods for
manipulating arrays:

Method name

Description

Arrays.binarySearch(array, value) |returnsthe index of the given value in a sorted
array (or < 0 if not found)
Arrays.copyOf(array, length) returns a new copy of array of given length
Arrays.equals(arrayl, array2) returns true if the two arrays contain same
elements in the same order
Arrays.fill(array, value); sets every element to the given value
Arrays.sort(array); arranges the elements into sorted order
Arrays.toString(array) returns a string representing the array, such as

"[10, 30, -25, 17]"

Array Methods to the Rescue!

Arrays.toString accepts an array as a parameter and
returns a string representation of its elements.

int[] e = {0, 2, 4, 6, 8};
e[1] = e[3] + e[4];

println("e is " + Arrays.toString(e));

Output:
e is [0, 14, 4, 6, 8]

Arrays as Parameters

e Arrays are just another variable type, so methods can take
arrays as parameters and return an array.

private int sumArray(int[] numbers) {

private int[] makeSpecialArray(...) {

return myArray;

e Arrays are just another variable type, so methods can take
arrays as parameters and return an array.

e However, arrays are objects, so per A Variable Origin
Story, an array variable box actually stores its location.

e This means changes to an array passed as a parameter
affect the original array!

31

public void run() {
int[] numbers = new int[7];

fillArray(numbers);
println(Arrays.toString(numbers));

private void fillArray(int[] arr) {
for (int 1 = 9; 1 < arr.length; i++) {
arr[i] = 2 * 1;

32

Practice: Swapping Elements

Let’s write a method called swapElements that swaps two
elements of an array. How can we do this?

What parameters should it take (if any)? What should it
return (if anything)?

private ??? swapElements(???) {

33

Swapping: Take 1

public void run() A
int[] array = new int[5];

swapElements(array[0], array[1l]);

}

private void swapElements(int x, int y) {
int temp = Xx;

X =Y;
y = temp;

34

Swapping: Take 1

public void run() {

Ints are primitives, so they are passed by value!
Their variable boxes store their actual values. So

changes to the parameter do not affect the
original.

}

private void swapElements(int x, int y) {
int temp = Xx;

X = Y;
y = temp;

35

Swapping: Take 2

public void run() {
int[] array = new int[5];

swapElements(array, 0, 1);

private void swapElements(int[] arr,
int temp = arr[posl];
arr[posl] = arr[pos2];
arr[pos2] = temp;

int posl, int pos2) {

36

Swapping: Take 2

public void run() {

S I i | . P 2L L.

Arrays are objects, so they are passed by
reference! Their variable boxes store their

location. So changes to the parameter do affect
the original.

private void swapElements(int[] arr, int posl, int pos2) {
int temp = arr[posl];
arr[posl] = arr[pos2];
arr[pos2] = temp;

Example: Reverse Array Program

public void run() {
int n = readInt("Enter number of elements:
int[] intArray = createIndexArray(n) ;

");

intArray

println ("Forward: " + arrayToString(intArray))
reverseArray (intArray) ;
println ("Reverse: " + arrayToString(intArray)) ;
} n
10

8 | 716 |5 |43

\O

0 1 2 3 4 5 6

ene ReverseArray

Enter number of elements: 10
Forward: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Reverse: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

skip simulation

Cryptogram

* A cryptogram 1s a puzzle in which a message 1s encoded by
replacing each letter in the original text with some other letter.
The substitution pattern remains the same throughout the
message. Your job in solving a cryptogram is to figure out
this correspondence.

* One of the most famous cryptograms was | =
written by Edgar Allan Poe in his short |
story “The Gold Bug.”

* In this story, Poe describes the technique
of assuming that the most common letters |
in the coded message correspond to the |
most common letters in English, which |
are E, T,A,O,I,N,S,H, R, D, L, and U.

Edgar Allan Poe (1809-1849)

Poe’s Cryptographic Puzzle

53%+3%1305))6*;4826)4%+)4%);806*;48+8¢1
60))85;1%+(;:+*81t83(88)5*t+,;46(,88*96*
?,;8)*+(,;485) ;5*t2:*%+(,4956*2 (5*-4) 81
8*,4069285);)61t8)4++,;1(+9,48081,;8:8+%
1;48185,;4)4851528806*81 (+9,48; (88,4 (
$?734;48)4+%+;161;:188;%7;

BGOOHCGOEAPPENTUBRHEPHOPFASPPTEOONTHARDPREY
POFPFBATEPRTYONEDPECGREBFEANDPTAERTBENENBN
UTRPNPRTEHBASTANDRYNORTEANASNBRRANCHEPERY
BNTHADGUNRBRAPTHOEHRPEAGOTERGETEAROBETRYR®
ETAEBHPEBATHFPHEADAREREOONEFROUNTARTRERTHER
PUCGHTHRPEUPTELGETYEBBT®OUT

N ©O O R 4+~ 0 U1 %~ ++ & ~ 0

e | B W W .

e e e ek e e N WD
0O O = N W N O O W

— = N W A DA U LN N ®

Implementation Strategy

The basic idea behind the program to count letter frequencies is
to use an array with 26 elements to keep track of how many times
each letter appears. As the program reads the text, it increments
the array element that corresponds to each letter.

X[AWBVNPPIK

111{0{0(0(0({1}0(2{0]0(2(0{0{0]0(0|1|1/1{0[0]1]0]0]|0

o 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

To the code!

Count Letter Frequencies

import acm.program.*;

/**

* This program creates a table of the letter frequencies in a
* paragraph of input text terminated by a blank 1line.

*/

public class CountLetterFrequencies extends ConsoleProgram {

/* Private instance variables */
private int[] frequencyTable;

public void run() {
println("This program counts letter frequencies.");
println("Enter a blank line to indicate the end of the text.");
initFrequencyTable () ;
while (true) {
String line = readLine() ;
if (line.length() == 0) break;
countLetterFrequencies (line) ;

}
printFrequencyTable() ;

}

/* Initializes the frequency table to contain zeros */
private void initFrequencyTable () ({
frequencyTable = new int[26];
for (int i = 0; i < 26; i++) {
frequencyTable[i] = 0;
}

Count Letter Frequencies

/* Counts the letter frequencies in a line of text */
private void countLetterFrequencies (String line) ({
for (int 1 = 0; i < line.length();, i++) {
char ch = line.charAt (i) ;
if (Character.isletter(ch)) {
int index = Character. toUpperCase(ch) - 'A';
frequencyTable[index] ++;

}

/* Displays the frequency table */
private void printFrequencyTable() {

for (char ch = 'A'; ch <= 'Z'; ch++) {
int index = ch - 'A';
println(ch + ": " + frequencyTable[index]) ;

page 2 of 2 skip code

