
Chris Piech Section #8
CS 106A March 7, 2018

Solution to Section #8
Based on a problem by Brandon Burr and Patrick Young

1. Flight Planner Server
/*
 * File: FlightPlannerServer.java
 * ---------------------
 * A server program that, when run, reads in information
 * about available flights from a data file, and then listens
 * for incoming network requests. This program can respond to
 * two types of requests:
 *
 * "getAllCities" -> we send back a list of all cities
 * "getDestinations" -> (needs parameter "city") we send back a
 * list of all cities reachable from the
 * provided city.
 */

import acm.program.*;
import acm.util.*;
import java.io.*;
import java.util.*;

public class FlightPlannerServer extends ConsoleProgram
 implements SimpleServerListener {

 /* The port number where we listen for requests */
 private static final int PORT = 8080;

 /* The name of the file containing our flight data */
 private static final String FLIGHT_DATA_FILE = "flights.txt";

 /* The server object that we use to listen for requests */
 private SimpleServer server;

 /* A map from city names to cities you can fly to from there */
 private HashMap<String, ArrayList<String>> flights;

 public void run() {
 readFlightData(FLIGHT_DATA_FILE);
 server = new SimpleServer(this, PORT);
 server.start();
 println("Starting server...");
 }

 /* Called when we receive a request to respond to */
 public String requestMade(Request request) {
 String cmd = request.getCommand();

 // Send back a list of all city names
 if (cmd.equals("getAllCities")) {
 println("Received getAllCities Request");
 ArrayList<String> cities = new ArrayList<String>();
 for (String cityName : flights.keySet()) {

 – 2 –

 cities.add(cityName);
 }
 return cities.toString();

 // Send back a list of cities reachable from the provided city
 } else if (cmd.equals("getDestinations")) {
 String city = request.getParam("city");
 println("Received getDestinations Request for " + city);
 ArrayList<String> destinations = flights.get(city);

 /* If that city is not in our map, we need to make an empty
 * list because we cannot call toString on null.
 */
 if (destinations == null) {
 destinations = new ArrayList<String>();
 }
 return destinations.toString();
 } else {
 return "Error, cannot process request: " + request;
 }
 }

 /**
 * Reads in the city information from the given file and stores the
 * information in the HashMap of flights.
 */
 private void readFlightData(String filename) {
 flights = new HashMap<String, ArrayList<String>>();
 try {
 Scanner fileScanner = new Scanner(new File(filename));
 while (fileScanner.hasNextLine()) {
 String line = fileScanner.nextLine();
 if (line.length() != 0) {
 readFlightEntry(line);
 }
 }
 fileScanner.close();
 } catch (IOException ex) {
 throw new ErrorException(ex);
 }
 }

 /**
 * Reads a single flight entry from the line passed as an argument,
 * which should be in the form
 *
 * fromCity -> toCity
 *
 * Each new flight is recorded by adding a new destination city to
 * the ArrayList stored in our flights HashMap under the key for
 * the starting city.
 */
 private void readFlightEntry(String line) {
 int arrow = line.indexOf("->");
 if (arrow == -1) {
 throw new ErrorException("Illegal flight entry " + line);
 }

 // Note: trim() removes leading/ending spaces from a string

 – 3 –

 String fromCity = line.substring(0, arrow).trim();
 String toCity = line.substring(arrow + 2).trim();
 defineCity(fromCity);
 defineCity(toCity);
 flights.get(fromCity).add(toCity);
 }

 /**
 * Defines a city if it has not already been defined. Defining
 * a city consists of entering an empty ArrayList in the flights
 * map to show that it has no destinations yet.
 */
 private void defineCity(String cityName) {
 if (!flights.containsKey(cityName)) {
 flights.put(cityName, new ArrayList<String>());
 }
 }
}

2. Flight Planner Client
/*
 * File: FlightPlannerClient.java
 * ------------------
 * A client program that talks to a flight server to allow
 * a user to plan out a flight path from a starting city
 * back to that starting city.
 */

import acm.program.*;
import java.io.*;
import java.util.*;

public class FlightPlannerClient extends ConsoleProgram {

 /* The network address for the flights server we should contact */
 private static final String HOST = "http://localhost:8080/";

 public void run() {
 println("Welcome to Flight Planner!");
 println("Here's a list of all the cities in our database:");
 ArrayList<String> cities = fetchCitiesList();
 if (cities == null) {
 println("Error: could not get list of all cities");
 return;
 }
 printCityList(cities);

 ArrayList<String> route = readInFlightRoute();
 if (route == null) {
 println("Error: could not get destinations");
 return;
 }
 printRoute(route);
 }

 /**
 * Prompts the user for cities to travel to until they end in

 – 4 –

 * the same city in which they started. Returns null if we weren't
 * able to get a response for a network request.
 */
 private ArrayList<String> readInFlightRoute() {
 println("Let's plan a round-trip route!");
 String startCity = readLine("Enter the starting city: ");
 ArrayList<String> route = new ArrayList<String>();
 route.add(startCity);
 String currentCity = startCity;

 while (true) {
 String nextCity = getNextCity(currentCity);
 if (nextCity == null) {
 // An error occurred
 return null;
 }
 route.add(nextCity);
 if (nextCity.equals(startCity)) {
 break;
 }
 currentCity = nextCity;
 }

 return route;
 }

 /**
 * Returns the list of all cities that the user can start at,
 * or null if we weren't able to get a response to our request.
 */
 private ArrayList<String> fetchCitiesList() {
 try {
 // The getAllCities request needs no parameters
 Request request = new Request("getAllCities");
 String result = SimpleClient.makeRequest(HOST, request);
 return makeListFromString(result);
 } catch (IOException e) {
 return null;
 }
 }

 /**
 * Fetches all the cities the user could travel to from the given
 * city, and prompts them for a destination until they enter one
 * of these cities. Then returns the city they chose. If we
 * weren't able to get a response for our request of destinations
 * for this city, this method returns null.
 */
 private String getNextCity(String city) {
 ArrayList<String> destinations = fetchDestinations(city);
 if (destinations == null) {
 // An error occurred
 return null;
 }

 String nextCity = null;
 while (true) {
 println("From " + city + " you can fly directly to:");
 printCityList(destinations);

 – 5 –

 String prompt = "Where do you want to go from "
 + city + "? ";
 nextCity = readLine(prompt);
 if (destinations.contains(nextCity)) break;
 println("You can't get to that city by a direct flight.");
 }
 return nextCity;
 }

 /**
 * Returns a list of cities that can be reached from the given
 * city. Returns null if we weren't able to get a response to our
 * request.
 */
 private ArrayList<String> fetchDestinations(String city) {
 try {
 /* The getDestinations request has a "city" parameter
 * that is the name of the city to get destinations for.
 */
 Request request = new Request("getDestinations");
 request.addParam("city", city);
 String result = SimpleClient.makeRequest(HOST, request);
 return makeListFromString(result);
 } catch (IOException e) {
 return null;
 }
 }

 /**
 * Prints a list of cities from the provided list. Each city name
 * is indented by a space.
 */
 private void printCityList(ArrayList<String> cityList) {
 for(int i = 0; i < cityList.size(); i++) {
 String city = cityList.get(i);
 println(" " + city);
 }
 }

 /**
 * Given a list of city names, prints out the flight
 * route, with a " -> " between each pair of cities
 */
 private void printRoute(ArrayList<String> route) {
 println("The route you've chosen is: ");
 for (int i = 0; i < route.size(); i++) {
 if (i > 0) print(" -> ");
 print(route.get(i));
 }
 println();
 }

 /**
 * (PROVIDED)
 * This is a wonderfully useful method that takes a list in string
 * form and turns it into and ArrayList. For example the string:
 * "[cs106a, rocks, socks]"
 * will return an ArrayList with three elements:
 * "cs106a" "rocks" and "socks"

 – 6 –

 */
 private ArrayList<String> makeListFromString(String listStr) {
 ArrayList<String> list = new ArrayList<String>();
 String raw = listStr.substring(1, listStr.length() - 1);
 String[] parts = raw.split(",");
 for(String part : parts) {
 String str = part.trim();
 if(!str.isEmpty()) {
 list.add(str);
 }
 }
 return list;
 }
}

