
Colin Kincaid      Assignment 2 

CS 106A        July 5, 2017 

Assignment #2: Intro to Java 

Due: 11AM PDT on Wednesday, July 11th 

This assignment should be done individually (not in pairs) 
 

Based on handouts by Mehran Sahami, Eric Roberts, Marty Stepp, and Nick Troccoli. 
 

For this assignment, you will write four different java programs. The starter project, 

available on the course website, will contain java files for you to write your programs in. 

Specifically, you will turn in the following files: QuadraticEquation.java, 

Weather.java, Hailstone.java, Rocket.java. You should not modify any other 

files in the starter project. 

 

Note that you should limit yourself to the material covered up until the release of this 

assignment (through lecture on Tuesday, July 3, excluding parameters). You should not 

use any other material (such as Strings, parameters, instance variables, return, etc.). As a 

general rule of thumb, any concepts covered in the readings up to but excluding Chapter 5 

are ok to use. If you have any questions about what is ok to use, feel free to ask. 

 

Comparing Output: each of your programs must exactly match the specified output. To 

check your output, use the Output Comparison tool built in to every Console Program: 

 

1) Run any one of your programs as normal. While in the program’s Java applet, 

click File -> Compare Output… 

 
2) We include several sample output files for each problem; select the output file 

against which you would like to compare your program. Note: the output files are 

saved in the output/ folder in your Eclipse project. To view what any output file 

contains, simply expand the output/ folder and double-click on any file to open it.  

3) A window will appear comparing your program’s output with that output file. 
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Problem 1: Quadratic Equation 

Write an interactive ConsoleProgram named QuadraticEquation that finds real roots of 

a quadratic equation. A quadratic equation is a mathematical equation of the form  

ax2 + bx + c = 0, where a is nonzero. Given the values of a, b, and c, the quadratic formula 

says that the roots (values of x) of the quadratic equation are given by: 

 

The quantity (b2 - 4ac) is called the discriminant. If it's greater than zero, there are two 

different real roots of the quadratic equation, which are given by the above formula. If it's 

exactly zero, there's just one root, given in two different ways by the quadratic formula. If 

it's negative, there are no real roots to the equation. 

Your job is to write a program that prompts the user for the values of a, b, and c, then prints 

out the roots of the corresponding quadratic equation. Your program must exactly duplicate 

the output of the following sample runs below, plus runs with other values. (User input as 

read from a call to readInt is shown in blue bold font below.) 
 

CS 106A Quadratic Solver! 

Enter a: 1 

Enter b: -3 

Enter c: -4 

Two roots: 4.0 and -1.0 

CS 106A Quadratic Solver! 

Enter a: 1 

Enter b: 6 

Enter c: 9 

One root: -3.0 

CS 106A Quadratic Solver! 

Enter a: 2 

Enter b: 4 

Enter c: 6 

No real roots 

expected output from three separate runs of the program (user input in blue) 
 

To compute the square root of some number x, you can use the Math.sqrt method. For 

example, the following code sets y to the square root of x: 
 

double y = Math.sqrt(x); 

 

You may assume that the user doesn't enter 0 as their value for a. Aside from the above 

restriction, the values of a, b, and c can be any integers. You should not do any rounding 

of real numbers in your output. 

While other parts of this homework must be decomposed using methods, you aren't 

required to do so on this problem. 

 

 

Problem 2: Weather 

Write an interactive ConsoleProgram named Weather that displays information about 

recent temperatures. The program should repeatedly prompt the user to enter temperatures 

until a particular "sentinel" value is entered. By default this sentinel value is -1. Once the 

sentinel value is entered, the program should display the maximum and minimum 

temperature typed, as well as the average temperature and the number of "cold" 

temperatures entered. Assume that "cold" (extremely subjective) is a temperature of 50 or 

lower. Your program should exactly duplicate the output of the following sample run (user 

input is shown in blue), plus be able to run properly with other values: 
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CS 106A "Weather Master 4000"! 

Next temperature (or -1 to quit)? 68 

Next temperature (or -1 to quit)? 94 

Next temperature (or -1 to quit)? 76 

Next temperature (or -1 to quit)? 45 

Next temperature (or -1 to quit)? 89 

Next temperature (or -1 to quit)? 36 

Next temperature (or -1 to quit)? 73 

Next temperature (or -1 to quit)? -1 

Highest temperature = 94 

Lowest temperature = 36 

Average = 68.71428571428571 

2 cold day(s). 
 

This program should be written to use a constant to represent the sentinel value -1, so that 

by changing only that constant's value and recompiling / running the program, it will now 

use the new sentinel value throughout the code and output. For example, if the constant's 

value is changed to -42, the program's output would look like: 
 

CS 106A "Weather Master 4000"! 

Next temperature (or -42 to quit)? 76 

Next temperature (or -42 to quit)? 89 

Next temperature (or -42 to quit)? 83 

Next temperature (or -42 to quit)? -42 

Highest temperature = 89 

Lowest temperature = 76 

Average = 82.66666666666667 

0 cold day(s). 
 

If only one temperature is entered, that temperature is the maximum, minimum, and 

average. For example: 
 

CS 106A "Weather Master 4000"! 

Next temperature (or -1 to quit)? -10 

Next temperature (or -1 to quit)? -1 

Highest temperature = -10 

Lowest temperature = -10 

Average = -10.0 

1 cold day(s). 
 

If no temperatures are entered, the program should instead print the following message 

saying that no temperatures were entered: 
 

CS 106A "Weather Master 4000"! 

Next temperature (or -1 to quit)? -1 

No temperatures were entered. 

 

While other parts of this homework must be decomposed using methods, you aren't 

required to do so on this problem. 
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Problem 3: Hailstone 

Douglas Hofstadter’s Pulitzer-prize-winning book Gödel, Escher, Bach contains many 

interesting mathematical puzzles, many of which can be expressed in the form of computer 

programs. In Chapter XII, Hofstadter mentions a wonderful problem that can be expressed 

as follows: 
 

Pick some positive integer and call it n. 

Do the following process until n is equal to one: 

- If n is odd, multiply it by three and add one. 

- If n is even, divide it by two. 
 

On page 401 of the Vintage edition, Hofstadter illustrates this process with the following 

example, starting with the number 15: 
 

 15 is odd, so I make 3n+1: 46 

 46 is even, so I take half: 23 

 23 is odd, so I make 3n+1: 70 

 70 is even, so I take half: 35 

 35 is odd, so I make 3n+1: 106 

 106 is even, so I take half: 53 

 53 is odd, so I make 3n+1: 160 

 160 is even, so I take half: 80 

 80 is even, so I take half: 40 

 40 is even, so I take half: 20 

 20 is even, so I take half: 10 

 10 is even, so I take half: 5 

 5 is odd, so I make 3n+1: 16 

 16 is even, so I take half: 8 

 8 is even, so I take half: 4 

 4 is even, so I take half: 2 

 2 is even, so I take half: 1 
 

As you can see from this example, the numbers go up and down, but eventually—at least 

for all numbers that have ever been tried—comes down to end in 1. In some respects, this 

process is reminiscent of the formation of hailstones, which get carried upward by the 

winds over and over again before they finally descend to the ground. Because of this 

analogy, this sequence of numbers is usually called the Hailstone sequence, although it 

goes by many other names as well. 
 

Write a ConsoleProgram that reads in a number from the user and then displays the 

Hailstone sequence for that number, just as in Hofstadter’s book, followed by a line 

showing the number of steps taken to reach 1. Then, after each hailstone sequence, the 

program should ask the user if they would like to enter another number. You may assume 

the user will type exactly "y" or "n" to this question. The program should continue 

outputting the hailstone sequence for the number the user enters until the user chooses not 

to enter another number. For example, your program should exactly duplicate the output of 

the following sample run (user input is shown in blue), plus be able to run properly with 

other values: 
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As shown above, you should handle the special case where the user enters 1, and output 

that it took 0 steps. You can ask the user to play again using the readBoolean method 

directly in an if statement or while loop, without storing it in a variable first. For example: 
 

while (readBoolean("Run again? ", "y", "n")) { 
 

We recommend starting by writing code to output a single Hailstone sequence and test this 

thoroughly before trying to handle the "Run again?" aspect. This program must have a 

method to output a single Hailstone sequence ("Enter a number ..." through "It took ..." 

inclusive). Note: using a method that calls itself instead of using loops is not appropriate 

for this problem, and will result in a deduction. 

 

The fascinating thing about this problem is that no one has yet been able to prove that it 

always stops. The number of steps in the process can certainly get very large. How many 

steps, for example, does your program take when n is 27? 

 

 

 

 

 

 

 

 

 

This program computes Hailstone sequences. 

 

Enter a number: 17 

17 is odd, so I make 3n + 1: 52 

52 is even, so I take half: 26 

26 is even, so I take half: 13 

13 is odd, so I make 3n + 1: 40 

40 is even, so I take half: 20 

20 is even, so I take half: 10 

10 is even, so I take half: 5 

5 is odd, so I make 3n + 1: 16 

16 is even, so I take half: 8 

8 is even, so I take half: 4 

4 is even, so I take half: 2 

2 is even, so I take half: 1 

It took 12 steps to reach 1. 

Run again? y 

 

Enter a number: 4 

4 is even, so I take half: 2 

2 is even, so I take half: 1 

It took 2 steps to reach 1. 

Run again? y 

 

Enter a number: 1 

It took 0 steps to reach 1. 

Run again? n 

Thanks for using Hailstone. 
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Problem 4: Rocket 

Write a (non-interactive) ConsoleProgram named Rocket that 

displays a specific text figure that looks like a rocket ship. You must 

exactly reproduce the format of the output at right, including 

identical characters and spacing. You must use nested for loops for 

lines that have repeated patterns of characters that vary in number 

from line to line, rather than using a single println statement that 

prints each line of the figure.  

  

Constant: Another significant component of this assignment is the 

task of generalizing the program using a single constant that can be 

changed to adjust the size of the figure. You should create one (and 

only one) constant named SIZE to represent the size of the pieces of 

the figure. Use 5 as the value of your SIZE constant. Your figure must 

be based on that exact value to receive full credit. 

However, on any given execution your program will produce just one 

version of the figure. But by simply changing your constant's value 

and re-running, your program would produce a figure of a different 

size. Your program should scale for any constant value of 2 or greater. 

For example, below at right is the output your program should 

produce at a SIZE of 3. You can use the previously-mentioned output 

comparison tool to check your output with various size constant 

values. 

 

Methods: You must use methods to represent each part of the rocket, structuring your 

solution in such a way that the methods match the structure of the 

output itself. Avoid significant redundancy; use methods so that no 

substantial groups of identical statements appear in your code. In this 

problem, no println statements should appear in your run 

method. You do not need to use methods to capture redundancy in 

partial lines, such as if a single line has the substring “...” printed 

twice. 

 

Development Strategy: We suggest that you not worry about the 

constant at first. Write an initial program without a constant that 

produces the default size-5 output. Make sure you use nested for 

loops for sequences of repeated characters. After your figure looks 

correct at the default size, then modify the code to use the constant. 

 

 

 

 

 

 

Figure at size 5: 

 
CS 106A Rocket 
(size 5) 
     /\ 
    //\\ 
   ///\\\ 
  ////\\\\ 
 /////\\\\\ 
+==========+ 
|..../\....| 
|.../\/\...| 
|../\/\/\..| 
|./\/\/\/\.| 
|/\/\/\/\/\| 
|\/\/\/\/\/| 
|.\/\/\/\/.| 
|..\/\/\/..| 
|...\/\/...| 
|....\/....| 
+==========+ 
     /\ 
    //\\ 
   ///\\\ 
  ////\\\\ 
 /////\\\\\ 

Figure at size 3: 

 
CS 106A Rocket 
(size 3) 
   /\ 
  //\\ 
 ///\\\ 
+======+ 
|../\..| 
|./\/\.| 
|/\/\/\| 
|\/\/\/| 
|.\/\/.| 
|..\/..| 
+======+ 
   /\ 
  //\\ 
 ///\\\ 
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Development Strategy and Grading 
As with the last assignment, it helps to have a step-by-step process, or development 

strategy, for solving it. Rather than trying to write an entire program without running or 

testing it, we suggest an incremental approach: Try solving a small part of the problem, 

running it to verify that what you wrote works properly, then continue. 

 

Functionality: Your code should compile without any errors or warnings. On this 

assignment, the console programs must work for a variety of user inputs. For example, the 

weather program should work for any integer temperature the user types. As with the Karel 

assignment, test your programs extensively before submitting them. 

Some of the other programs that you'll be writing need to refer to constants defined in your 

program. A constant makes it easier to change your program's behavior simply by adjusting 

the value assigned to that constant. When grading, we will run your programs with a variety 

of different constant values to test whether you have correctly and consistently used 

constants throughout your program. Before submitting, you should check whether or not 

your programs work when you vary the values of the constants as appropriate. 

 

Style: Style is just as important as ever in this assignment. Have you read the Style Guide 

on the course website yet? If not, please do so (it’s in the “Assignments” tab). It will be 

updated for each assignment with any new constraints to be aware of. Be sure to still follow 

the guidelines laid out in the Karel assignment, as well as any new ones added to the online 

guide or shown in class. 

Procedural decomposition: The QuadraticEquation and Weather programs do not require 

methods, but for the other problems, your run method should represent a concise summary 

of the overall program, calling other methods to do the work of solving the problem, but 

run itself should not directly do much of the work. 

Fields / instance variables: You should never declare any "global" variables outside of 

methods (also called "instance variables"). Always declare local variables that exist only 

inside a single method. If you need to use a value between multiple methods, declare a 

constant instead or rethink your decomposition. 

 

Honor Code: Remember to follow the Honor Code when working on this assignment. 

Submit your own work and do not look at others' solutions. Also do not give out your 

solution and do not place your solution on a public web site or forum. Remember that all 

solutions from this quarter and past quarters, as well as any solutions found online, will be 

electronically compared. If you need help, please seek out our available resources to help 

you; we are more than happy to try to help you solve these problems. 


	Assignment #2: Intro to Java
	Due: 11AM PDT on Wednesday, July 11th
	This assignment should be done individually (not in pairs)
	Based on handouts by Mehran Sahami, Eric Roberts, Marty Stepp, and Nick Troccoli.
	Problem 1: Quadratic Equation
	Problem 2: Weather
	CS 106A "Weather Master 4000"!
	CS 106A "Weather Master 4000"!
	CS 106A "Weather Master 4000"!
	CS 106A "Weather Master 4000"!
	Problem 3: Hailstone
	Problem 4: Rocket
	Development Strategy and Grading

