
Colin Kincaid Assignment #6

CS 106A August 6, 2018

Assignment #6 — BiasBars

Due: 11:00AM PDT on Tuesday, August 14th
This assignment may be done in pairs (which is optional, not required)

Note: NO late days (free or otherwise) may be used on this assignment

The BiasBars assignment was devised by Jennie Yang and Monica Anuforo and inspired by NameSurfer, which was created by

Nick Parlante and tweaked by other CS106A instructors over the years.

This assignment will give you a chance to build a program using Java interactors including buttons, text

fields, and a resizable graphical display—something that resembles an application you would find on your

own computer. The result will be an application that, unlike Breakout or Snowman, is not a game but rather

a useful program that presents data on important social questions.

Figure 1. Sample run of the BiasBars program using the word “funny”

Much of today’s work in artificial intelligence involves natural language processing, a field which studies

the way language is used today and has been used in the past. The datasets we use to train artificially

intelligent systems are collections of text that humans have written. If there are imbalances in how different

groups of people tend to be described, then our machines will pick up on and potentially amplify those

imbalances. Extreme manifestations of these biases like Tay, Microsoft’s 2016 chatbot infamous for

– 2 –

tweeting racist and anti-Semitic statements after just a day of learning from anonymous posts on the

Internet, magnify the importance of understanding the ways we use language.

Even when people do not mean to be malicious, their language can still exhibit biases that influence how

our machines learn. For example, when history of science professor Londa Schiebinger attempted to Google

Translate a Spanish article written about her, all of the pronouns became “he” and “him” rather than “she”

and “her” simply because masculine pronouns were more common than feminine pronouns in the available

data. In a later study, Schiebinger found more insidious translation errors that assumed genders for people

of certain professions, based on the frequency of word usage in gendered languages such as German1. The

software engineers who made Google Translate probably did not mean for this to occur; they probably did

not even account for that possibility as they were designing their translation algorithm. The moral of the

story? To prevent these kinds of slip-ups, computer scientists need to consider the social and ethical impacts

of their work beforehand.

We hope that by introducing these sorts of topics early in computer science education, we can help the next

generation of software developers and computer science researchers—which might include you!—be more

mindful of the potential social implications of their work.

A Brief History of BiasBars

BiasBars is a spinoff of NameSurfer, a past CS106A assignment that asked students to graph data about the

popularity of baby names over time. For an ethics-themed hackathon in April 2018, Jennie and Monica

decided to create a parody of NameSurfer that instead graphed information about gender and

RateMyProfessor reviews, based on an applet2 created by history professor Ben Schmidt of Northeastern

University. (The data you will be using for this assignment will be similar, but not from the same source.)

When Colin heard about the project, he decided to help bring it to life!

Overview of RtGender
The advent of social media has given us unprecedented access to celebrities, politicians, and others who

would otherwise be complete strangers. The indirectness and anonymity of being behind a computer or

phone screen also gives people a sense of security to say whatever they want, which can range from the

supportive or constructive to the downright offensive or harmful. But can the addressee’s gender influence

how we choose to speak about them?

In 2018, a team of researchers from Stanford, Michigan, and Carnegie Mellon compiled a dataset called

Responses to Gender (RtGender)3, comprising comments from popular Facebook pages, Reddit, TED

Talks, and Fitocracy in order to study just that. From this corpus, we can extract data about the kinds of

language typically used when describing women and men on the Internet.

1 https://genderedinnovations.stanford.edu/case-studies/nlp.html
2 http://benschmidt.org/profGender/
3 For further analysis of the RtGender dataset, see the research team’s paper (presented at the 2018 International

Conference on Language Resources and Evaluation) here: https://nlp.stanford.edu/robvoigt/rtgender/rtgender.pdf

https://genderedinnovations.stanford.edu/case-studies/nlp.html
http://benschmidt.org/profGender/
https://nlp.stanford.edu/robvoigt/rtgender/rtgender.pdf

– 3 –

There are a few details to note about this dataset:

1. Comments on Facebook posts and TED Talks are “broadcast,” in that they are addressed to people

in positions of authority for a wider audience to see. In contrast, comments from Reddit and

Fitocracy typically come from person-to-person interactions. This fundamental difference can

affect how people think or speak about the recipient of their comments.

2. The gender of the commenter can also have an impact on what language they use, so analysis based

purely on the gender of the comment recipient does not tell us everything we might want to know.

Nonetheless, it can still give us some understanding of the biases that might exist when people use

social media.

3. In this dataset, gender is the only piece of information we have about these people’s social

identities; it does not include data on other salient identities such as race and ability. Furthermore,

gender is only classified into the categories of woman and man, which means non-binary people

are unfortunately not represented. In the future, it would be great to have data about all sorts of

people (maybe you can help make that happen!). For now, we at least have a place to start.

4. The data visualized in this applet should not be seen as indicative of any trends. The number of

responses to women’s posts is not the same as the number of responses to men’s posts, and we ask

you to consider the data as a count of the number of occurrences of words rather than a true

“frequency” (a frequency is the number of occurrences per some number of words; we use that

term throughout the assignment for simplicity, but we really mean a count). Moreover, this dataset

categorizes responses based on the gender of the original poster rather than the subject of each

descriptor, so it does not exactly work for our intended purpose of studying how people describe

women and men differently. The dataset also does not take into account the fact that many of these

descriptors are preceded by the word “not”. To visualize trends more accurately, see the original

applet upon which this assignment is based (link in Footnote 2).

The BiasBars Project

Your task is to take pre-processed data from the RtGender dataset and create a program that allows you to

visualize how different descriptors are used for women and men on the Internet. This visualization will take

the form of a bar graph; for the particular descriptor you are observing, different bars will show the relative

frequency with which women and men are described with that word. We have laid out some milestones to

guide you as you tackle this project:

Milestone 0: Understand the Starter Files
All of the data you will need for this assignment can be boiled down to a text file that looks like this:

 gender-data.txt

fair W 1018 1240 209 1680 95 M 3155 380 821 6195 138

inevitable W 59 29 123 77 10 M 170 14 467 287 15

different W 1318 1660 3012 5019 410 M 3789 1012 8768 16638 471

...

– 4 –

Each line of the file begins with a word (typically an adjective). This descriptor is followed by the letter

“W4” and the number of occurrences of that word in comments describing women from each social media

platform. The line ends with the letter “M” and the word frequency data associated with men.

The different social media sites that act as the sources for our comments can be found in a constant array

of Strings called COMMENT_SOURCES, which is defined in the BiasBarsGraph class (more about this

later). The comment sources are

1. Facebook pages of politicians

2. Facebook pages of other celebrities

3. The TED website

4. Reddit

5. Fitocracy

In each line of the file, the five frequencies that appear after “W” and the five frequencies that appear after

“M” correspond, in order, to these five sources of comments. So, the first frequency listed will be from

politicians’ Facebook pages, the second frequency will be from celebrities’ Facebook pages, and so on.

Once you have completely finished the BiasBars assignment, you should be able to visualize the data for

particular words as shown in Figure 1.

To give you more experience working with classes that interact with one another, the BiasBars application

as a whole is broken down into several class files, as follows:

● BiasBars — The main program class that ties together the application. It is responsible for

creating the other objects and for responding to the buttons at the top of the window, but only to

the point of redirecting those inputs to the objects represented by the other classes.

● BiasBarsEntry — Encapsulates all the information for a particular descriptor. Given a

BiasBarsEntry object, you can find out what descriptor it corresponds to, as well as the number

of times it occurs for women and men across each of the internet platforms.

● BiasBarsDatabase — Stores all of the data from the source file in a structure better suited for

the needs of the program. This class is completely separate from the user interface. It is responsible

for reading in the file and for locating the data associated with a particular descriptor.

● BiasBarsGraph — A subclass of GCanvas that displays the graph for a descriptor by arranging

the appropriate GObjects on the screen, just as with the various graphical programs you’ve written

this quarter. Includes the COMMENT_SOURCES array as well as the values and dimensions needed

to plot your graphs correctly.

In each of these classes, you must implement certain public methods as outlined in the milestones below.

In the starter code, all of these methods are already included as stubs. Stubs are methods that will eventually

become part of the program structure but that are temporarily unimplemented. They play a very important

role in program development because they allow you to set out the structure of a program even before you

4 We choose to describe the two genders included in this dataset as “woman” and “man” rather than “female” and

“male,” as the former terms refer to gender and social role whereas the latter typically refer to sex assigned at birth.

– 5 –

write most of the code. As you implement the program, you will go through the code and replace stubs with

real code as you need it.

You may add extra private methods where you find them helpful, but you may not add any public methods

other than the ones specified in the milestones below.

Part of writing code with good style on this assignment is properly separating responsibilities between

these classes as outlined below, and choosing the appropriate data structure(s) to use. Although the class

structure may sound complicated, the scale of the project is comparable to previous assignments. That being

said, we encourage you to get started early and use the following milestones.

Milestone 1: Assemble the GUI interactors

Your first milestone is to add the interactors to the window to detect button clicks and read what’s in the

text field. If you look at the top of Figure 2 below, you will see that the region along the NORTH edge of the

window contains the following interactors, from left to right:

● A JLabel with the text “Descriptor: ”.

● A TEXT_FIELD_WIDTH-wide JTextField, initially blank, for typing in words.

● A JButton labeled “Graph”. Clicking this button (or pressing ENTER on the text field) should

cause the program to graph the frequency data for the currently typed descriptor.

○ The program is case-insensitive: “nice”, “NICE” or “NiCe” should all correctly graph

information for the word “nice”.

○ If there is no frequency data about that descriptor, the program should not change the

currently displayed graph.

● A JButton labeled “Clear”. Clicking this button should cause the program to clear the currently

graphed data.

Figure 2. Close-up of interactors used in BiasBars user interface

The simplest strategy to check whether your program is working is to change the definition of the

BiasBars class so that it extends ConsoleProgram instead of Program, at least for the moment. You

can always change it back later. Once you have made that change, you can then use the console to record

what is happening in terms of the interactors to make sure that you’ve got them right. For example, Figure

3 below shows a possible transcript of the commands used to generate the output from Figure 2, in which

the user has just completed the following actions:

1. Entered the word nice in the text field and clicked the Graph button.

2. Clicked the Clear button.

3. Entered the word smart in the text field and then typed the ENTER key.

– 6 –

Figure 3. Illustration of Milestone 1

The hard part about reaching this milestone is understanding how interactors work. Once you do, you will

be able to accomplish the milestone in a relatively small amount of code.

Milestone 2: Implement the BiasBarsEntry class

The BiasBarsEntry class encapsulates the information pertaining to one descriptor for both women and

men. That information consists of three parts:

1. The descriptor itself, such as “nice” or “smart”

2. The number of times that descriptor appears in comments describing women for each source

3. The number of times that descriptor appears in comments describing men for each source

Within the class, you are required to implement the following constructor and methods:

public BiasBarsEntry(String dataLine)

In this constructor you should initialize the state of a new entry from the given line of data. You should

assume that the line of data is from the gender-data.txt file shown previously, such as:

nice W 2031 10179 1077 3338 2311 M 4606 2926 3274 9603 2682

Note that the number of comment sources might not be five; the BiasBarsEntry class has no knowledge

of how many frequency entries it will need to store, just that there will be some number of frequencies

for women after the “W” and some number for men after the “M”.

The implementation of the constructor has to parse the line and store all of this information as the private

state of the object, in such a way that it is easy for getDescriptor, getFrequencies, and

getMaxFrequency to return the appropriate values.

public String getDescriptor()

In this getter method, you should return the entry’s descriptor as it was read from the input data passed in

when it was created. For example, given the example line in the constructor description above,

getDescriptor would return "nice".

– 7 –

public ArrayList<Integer> getFrequencies(char gender)

This method should return a list of the frequencies stored in a descriptor’s entry for a given gender, where

the frequencies are in the same order that they were in the original file. For example, given the example

line in the constructor description above, getFrequencies(‘W’) would return [2031, 10179,

1077, 3338, 2311], and getFrequencies(‘M’) would return [4606, 2926, 3274, 9603,

2682]. If the character passed in is not ‘W’ or ‘M’, you should return null.

public int getMaxFrequency()

This method should return the highest frequency among all the frequencies across both genders for this

entry. This will help with graphing later on.

public String toString()

In this method, you should return a human-readable string representation of an entry’s data. The format

must list the descriptor followed by lists of that word’s frequencies for both women and men , separated by

commas. For example, the BiasBarsEntry for “nice” would return the following string:

nice: {W=[2031, 10179, 1077, 3338, 2311], M=[4606, 2926, 3274, 9603, 2682]}

You must exactly match this output in your implementation.

Hint: instead of manually generating the list of frequencies portion of the string yourself, see if there is an

already-implemented method we know of that can help create this string for you.

To show that you have implemented BiasBarsEntry correctly, you might want to write a short test

program that creates an entry from a specific string and then verifies that the other methods work as they

are supposed to. To do so, you can (temporarily) change BiasBars from extending a Program to a

ConsoleProgram, and then use the console to verify that your BiasBarsEntry is behaving as expected.

Milestone 3: Implement the BiasBarsDataBase class

The next step is to define a new type of object called a BiasBarsDatabase that will manage the entire

database of descriptors. Within the class, you are required to implement the following constructor and

method:

public BiasBarsDatabase(String filename)

In this constructor, you should initialize the state of a new database and read in the data from the given data

filename such that all the data is stored within the database object and can be easily returned as needed from

the findEntry method (see below).

– 8 –

public BiasBarsEntry findEntry(String descriptor)

This method takes a name, looks it up in the database (note that this method should be case-insensitive; the

name can be passed with any capitalization) and returns the BiasBarsEntry for that descriptor, or null

if that descriptor does not appear.

For this class, think about different ways you can store data within the database using variable types we

have discussed, and which might be the most appropriate here given the structure of the data and what the

database needs to do with it.

To test this part of the program, you can add a little code to the BiasBars program so that it creates a

BiasBarsDatabase, and then change the code for the interactors so that clicking the “Graph” button (or

pressing ENTER in the text field) looks up the current descriptor in the database and then displays the

corresponding entry (using its toString method), as shown in Figure 4 below.

Figure 4. Illustration of Milestone 3

The code for this part of the assignment should not be very long. The challenge lies in figuring out how to

represent the data so that you can implement findEntry as simply and as efficiently as possible.

Milestone 4: Draw the background of the BiasBarsGraph class

The next step in the process is to begin the implementation of the BiasBarsGraph class, which is

responsible for displaying a graph in the window using information from the database. There are a couple

of important items in the BiasBarsGraph starter file that you should be aware of:

1. This class extends GCanvas, which means that we can call any GCanvas methods that you’ve

already learned, like add or remove, from within BiasBarsGraph.

2. The starter file includes a tiny bit of code that monitors the size of the window and calls the update

method whenever the size changes. This code requires only a couple of lines to implement, but

would be hard to explain well enough for you to implement on your own. So, we have taken care

of it for you; you’re welcome!

To start the process of adding the graphing code, go back to the BiasBars class and change its definition

so that it extends Program rather than the temporary expedient of extending ConsoleProgram (if you

were using that for debugging). At the same time, you should remove any test code from the earlier

milestones. Then, create a new BiasBarsGraph and add it to the screen.

– 9 –

If you run the program with only these changes, it will show a blank graph and not actually display anything

on the screen. To create the graph, you need to implement the update method, as well as any other private

helper methods you find appropriate.

To begin the implementation of your update method, write the code that draws the blank graph. For this,

you need to create the axes, y-axis tick marks, labels for the frequencies along the y-axis, and labels for the

comment sources along the x-axis, as follows:

● The boundaries of the graph should be drawn using a GRect, which is offset by LEFT_MARGIN

and RIGHT_MARGIN from the left and right of the window, respectively, and offset by

VERTICAL_MARGIN from both the top and bottom of the window. The left edge of the graph

corresponds to the y-axis and the bottom edge to the x-axis.

● There should be NLABELS tick marks evenly spaced along the y-axis. Each tick mark should be

represented by a GLine with length TICK_MARK_LENGTH and horizontally centered on the y-axis.

● For each tick mark on the y-axis, you should add a label representing frequency, which should be

vertically centered on the corresponding tick mark. The label for the lowest tick mark should have

value 0 and the label for the highest tick mark should have a value of DEFAULT_MAX_FREQ for

now, although eventually you will scale it according to the data being shown in the graph. The

remaining labels should be evenly spaced between 0 and the value of the highest label.

● For each source in COMMENT_SOURCES, you should add a label that displays the name of the source.

Vertical positioning for these labels is described in the next bullet point; horizontal positioning,

because it depends on the bars, is not described until Milestone 5. For now, do whatever horizontal

positioning you want. You will change this later once you determine the spacing of the bars.

● Labels on the y-axis must be positioned so their right edge is LABEL_OFFSET distance from the

y-axis. Labels on the x-axis must be positioned so the top of the label is LABEL_OFFSET distance

below the x-axis. You should set the font of all labels to be bold and size 16, which you can do with

the following call to setFont:

 label.setFont(“*-BOLD-16”);

Figure 5 is a diagram of the blank graph with all of the necessary margins, offsets, and other lengths marked.

The dimensions you will need to know for drawing the axes can be found in BiasBarsGraph. (Note that

the diagram is NOT to scale; the dimensions have been enlarged for illustration purposes, and there are

fewer tick marks and y-axis labels than you will have.)

Use the output comparison tool to confirm that your sizing and positioning are correct. You can find a guide

for using the output comparison tool in the Assignment 2 handout. Each sample output file specifies what

size your screen should be (control this using setSize in BiasBars) and what value you should use for

the BARS_WIDTH constant when testing. If you want to print out x/y coordinates during your testing, you

will need to use System.out.println in order to see the printed messages in the bottom Eclipse console.

Getting the positioning perfect should not be your top priority; first focus on making a functioning graph

that looks roughly correct, and then work on the precise math for spacing and centering.

– 10 –

Figure 5. Diagram of a blank BiasBarsGraph

Figure 6. Diagram of a completed BiasBarsGraph

– 11 –

Milestone 5: Complete the BiasBarsGraph class

In addition to creating the axes for the graph, the update method in BiasBarsGraph also has to plot the

actual data values. In BiasBars, data is shown using bar graphs. The x-axis separates the data by comment

source. Along the y-axis is the number of occurrences of the selected descriptor.

There are a couple of points that you should keep in mind while implementing this milestone:

● Each comment source will have its own section on the x-axis, with a corresponding label, and each

section will have the same total width for its two bars (the constant BARS_WIDTH). These sections

should be positioned so that there is the same amount of space between each set of bars, which is

also the same amount of space between the y-axis and the left-most bar. Each label should have the

same midpoint as the corresponding bars. See Figure 6 above for an illustration of this spacing.

● For each comment source, the graph will have one bar to represent the frequency for women and

one bar for men, side by side. The bars for women will be one color, and the bars for men will be

another. You can choose any colors for your bars as long as the bar for women is on the left and

the bar for men is on the right. To expand your range of colors, consider using the darker method:

Color darkRed = Color.RED.darker();

● When you display a new descriptor, you should set the scale of your y-axis such that the top of the

graph will represent the maximum frequency in the data for that descriptor (this is where the

getMaxFrequency method from BiasBarsEntry comes in), rounded up to the nearest multiple

of 10 (represented by the MAGNITUDE constant in the BiasBarsGraph file). To round a frequency

up to the nearest MAGNITUDE, you can do the following calculation, which takes advantage of

integer division:

 int highestFreqLabel = entry.getMaxFreq() / MAGNITUDE * MAGNITUDE;

 if (highestFreqLabel != entry.getMaxFreq()) {

 highestFreqLabel += MAGNITUDE;

 }

(Take a minute to think about what this snippet of code is doing!)

● The height of each bar should be calculated such that frequency 0 is at the bottom of the graph, the

maximum frequency is near the top of the graph, and all other frequencies are evenly-spaced in

between.

● For each bar, also display a label at the top of the bar that shows “W” if the bar represents frequency

for women and “M” if for men. This gender label should have a buffer of LABEL_OFFSET

horizontally and vertically from the top-left corner of each bar. You should not display this label if

the frequency of that bar is 0.

● Finally, for each pair of bars, display a label at the bottom of the bar that shows the descriptor being

graphed. The descriptor text should be centered across the two bars, LABEL_OFFSET above the

– 12 –

bottom of the bar. You may notice that this and the gender label don’t look great when the frequency

is close to 0 – this is totally fine, and it can be an extension to make them look nicer in this case.

The BiasBarsGraph class includes a few methods for specifying which entry is displayed on the screen

and modifying the display. You’ve already started working on update, but you’ll need to complete its

implementation at this point. The addEntry method supplies the graph with a BiasBarsEntry whose

information it should plot when the graph is updated. The clear method removes that entry so that nothing

is displayed when the graph is updated. You will need to implement all three of these methods in order to

make the graph work as expected.

It is important to note that neither addEntry nor clear actually changes the display. To make changes in

the display, you need to call update, which deletes any existing GObjects from the canvas and then

reassembles everything onto the display. At first glance, this strategy might seem unnecessary. It would, of

course, be possible to have addEntry just add the objects necessary to draw the graph.

The problem with that approach is that it would no longer be possible to reconstruct the entire graph. For

example, you need to recreate the graph whenever you change the size of the display, which wouldn’t be

possible without knowing the magnitude of the frequencies that need to be shown on the graph. By storing

the current entry internally, the BiasBarsGraph class can redraw everything when update is invoked

from the componentResized method.

Note: COMMON BUG – Some students encounter a bug where the width and height of their

BiasBarsGraph are 0. This will happen if your code tries to ask for the size of your graph before it’s been

added to the screen. This may happen in two places; in BiasBars’s init method (since the program has

not yet launched), or in the BiasBarsGraph constructor (since, if you’re still creating the graph, there’s

no way it’s been added to the screen yet!). Instead, make sure to only ask for the dimensions of the graph

once it has been added to the screen.

Hint: It may be helpful to know that the componentResized method is called once automatically when

the graph is first added to the screen (after the init method finishes), and it is safe to call getWidth and

getHeight at that point.

The final step in completing your program is to actually call the graph’s public methods in the BiasBars

class so that the user’s requests to graph and clear entries are executed. Once you have that working,

congratulations! You just built a Java applet that takes user input through a GUI and works with a large

amount of real-world data.

Optional Extensions

There are many possibilities for optional extra features that you can add if you like, potentially for

a small amount of extra credit. If you are going to do this, please submit two versions of your

program: one that meets all the assignment requirements, and a second extended version (see the

FAQ on the Eclipse page for how to create new files in your project). At the top of your extended

files, in your comment header, you must comment what extra features you completed. Here are

a few ideas:

– 13 –

● Support for showing multiple descriptors at once

○ You might want to allow your BiasBarsGraph to support displaying the data for multiple

descriptors at once. Because each comment source has a set width, you’ll need to divide

the allotted width by the number of bars needed in order to determine how wide the

individual bars should be. The y-axis should continue to scale to the maximum frequency

represented on the graph rounded up to the nearest MAGNITUDE. An extension upon this

extension would be to allow deletion as well as addition.

● Toggling between bar graph and other sort of graph

○ You might consider allowing your graph to show the data with more than just bars. Try

other forms of data visualization and see what you like best.

● Changing colors

○ Try modifying your graph such that every time you graph a new descriptor, the graph

changes its colors according to a particular sequence. First, add a constant array of colors

to BiasBarsGraph. Then, you’ll want some way of figuring out how many different

graphs have been shown in order to cycle through the color array.

● Improving readability of the graph

○ This may include resizing the font size of labels or size of bars as the size of the window

changes, positioning labels better when frequency is close to 0, or anything else that makes

the graph easier to read.

● Plotting the data differently

○ What other information about the descriptor frequencies could you display? Consider

adding the ability to view the most or least frequently used descriptors, correlation between

descriptors, or other interesting insights that are not immediately apparent.

Grading

Functionality: Your code should compile without any errors or warnings.

Style: Follow style guidelines taught in class and listed in the course Style Guide. For example, use good

procedural decomposition into methods to indicate structure and avoid redundancy. Use descriptive names

for variables and methods. Format your code using indentation and whitespace. Avoid redundancy using

methods, loops, and factoring. Minimize the use of private instance variables, preferring local variables as

much as possible. Use descriptive comments, including at the top of each .java file, atop each method, inline

on complex sections of code, and a citation of all sources you used to help write your program. If you

complete any extra features, list them in your extra files’ comments to make sure the grader knows what

you completed.

Honor Code: Follow the Honor Code when working on this assignment. Submit your own work and do

not look at others' solutions (outside of your pair, if you are part of a pair). Do not give out your solution.

Do not search online for solutions. Do not place a solution to this assignment on a public web site or forum.

Solutions from this quarter, past quarters, and any solutions found online, will be electronically compared.

– 14 –

Final Remarks

We hope you enjoy this assignment! :-) If you’re interested in learning more about natural language

processing and computer science, check out the resources linked in this handout, talk to Colin, Annie,

Jennie, or Monica, or take a look at CS124 at Stanford!

Acknowledgements

● Rob Voigt, Vinodkumar Prabhakaran, Dan Jurafsky of Stanford, David Jurgens of University of

Michigan, Yulia Tsvetkov of CMU for creating the RtGender dataset and graciously allowing us

to use it for this assignment

● Ben Schmidt of Northeastern for creating the “Gendered Language in Teaching Reviews” applet,

which inspired this assignment

● Londa Schiebinger of Stanford for inspiring us to explore the relationship between gender,

language, and software in the first place

● Cynthia Lee and Keith Schwarz for their enthusiasm about our project

● Colin Kincaid for finding the RtGender dataset for us to use and rigorously editing the handout

● Annie Hu for transforming the RtGender dataset into a format suitable for this assignment

● Kashif Nazir for suggesting the assignment’s final name, as well as the runner-up: GenderRender

Copyright © Stanford University and Colin Kincaid, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

	Assignment #6 — BiasBars
	A Brief History of BiasBars
	Overview of RtGender
	The BiasBars Project
	Milestone 0: Understand the Starter Files
	Milestone 1: Assemble the GUI interactors
	Milestone 2: Implement the BiasBarsEntry class
	You must exactly match this output in your implementation.
	Milestone 3: Implement the BiasBarsDataBase class
	Milestone 4: Draw the background of the BiasBarsGraph class
	Milestone 5: Complete the BiasBarsGraph class
	Color darkRed = Color.RED.darker();
	Optional Extensions
	Grading
	Functionality: Your code should compile without any errors or warnings.
	Final Remarks
	Acknowledgements

