
This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, and others.

CS 106A, Lecture 22
More Classes

suggested reading:
Java Ch. 6

2

Plan for today
•Announcements
•Review: Classes
•toString
•this
•Practice: Employee
•Inheritance
•Recap

3

Learning Goals
• Know how to define our own variable types
• Know how to define variable types that inherit from other types
• Be able to write programs consisting of multiple classes

4

Plan for today
•Announcements
•Review: Classes
•toString
•this
•Practice: Employee
•Inheritance
•Recap

5

Announcements
•Assignment 5 due/Assignment 6 out Monday
•Reminder: the 106A website’s “Schedule”

page has lots of neat stuff for each lecture!
–Slides and suggested reading sections
–Starter code and polished solutions for live-

coded programs
–CodeStepByStep practice problems

•Midterm regrade requests can be made on
Gradescope until 1PM on Monday

6

Plan for today
•Announcements
•Review: Classes
•toString
•this
•Practice: Employee
•Inheritance
•Recap

7

What Is A Class?

A class defines a
new variable type.

8

Classes Are Like Blueprints
iPod blueprint (class)

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

iPod (variable) #1
state:
song = "1,000,000 Miles"
volume = 17
battery life = 2.5 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod (variable) #2
state:
song = "Letting You"
volume = 9
battery life = 3.41 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod (variable) #3
state:
song = "Discipline"
volume = 24
battery life = 1.8 hrs

behavior:
power on/off
change station/song
change volume
choose random song

constructs

9

Creating A New Class
1. What information is inside this new

variable type?
– These are its instance variables.

2. How do you create a variable of this type?
– This is the constructor.

3. What can this new variable type do?
– These are its public methods.

10

Example: BankAccount

Let’s see the code!

11

Plan for today
•Announcements
•Review: Classes
•toString
•this
•Practice: Employee
•Inheritance
•Recap

12

Printing Variables
• By default, Java doesn't know how to print objects.

BankAccount ba1 = new BankAccount("Marty", 1.25);
println("ba1 is " + ba1); // ba1 is BankAccount@9e8c34

// better, but cumbersome to write
println("ba1 is " + ba1.getName() + " with $"

+ ba1.getBalance()); // ba1 is Marty with $1.25

// desired behavior
println("ba1 is " + ba1); // ba1 is Marty with $1.25

13

The toString Method
A special method in a class that tells Java how to convert an object
into a string.

BankAccount ba1 = new BankAccount("Marty", 1.25);
println("ba1 is " + ba1);

// the above code is really calling the following:
println("ba1 is " + ba1.toString());

• Every class has a toString, even if it isn't in your code.
– Default: class's name @ object's memory address (base 16)

BankAccount@9e8c34

14

The toString Method
public String toString() {

code that returns a String
representing this object;

}

– Method name, return, and parameters must match exactly.

– Example:
// Returns a String representing this account.
public String toString() {

return name + " has $" + balance;
}

15

Plan for today
•Announcements
•Review: Classes
•toString
•this
•Practice: Employee
•Inheritance
•Recap

16

The “this” Keyword
this: Refers to the object on which a method is currently being
called

BankAccount ba1 = new BankAccount();
ba1.deposit(5);

// in BankAccount.java
public void deposit(double amount) {

// for code above, “this” -> ba1
...

}

17

Using “this”
Sometimes we want to name parameters the same as instance
variables.

public class BankAccount {
private double balance;
private String name;
...

public void setName(String newName) {
name = newName;

}
}

– Here, the parameter to setName is named newName to be distinct
from the object's field name .

18

Using “this”
public class BankAccount {

private double balance;
private String name;
...

public void setName(String name) {
name = name;

}
}

19

Using “this”
We can use “this” to specify which one is the instance variable
and which one is the local variable.

public class BankAccount {
private double balance;
private String name;
...

public void setName(String name) {
this.name = name;

}
}

20

Plan for today
•Announcements
•Review: Classes
•toString
•this
•Practice: Employee
•Inheritance
•Recap

21

Practice: Employee
Let’s define a new variable type called Employee
that represents a single Employee.

What information would an Employee store?

How would you create a new Employee variable?

What could an Employee do?

22

Plan for today
•Announcements
•Review: Classes
•toString
•this
•Practice: Employee
•Inheritance
•Recap

23

Inheritance

Inheritance lets us
relate our variable

types to one another.

24

Inheritance

Employee

Programmer

Karel
Programmer

Variable types can seem
to “inherit” from one
other. We don’t want to
have to duplicate code for
each one!

25

Example: GObjects
• The Stanford library uses an inheritance hierarchy of graphical

objects based on a common superclass named GObject.

26

Example: GObjects
• GObject defines the state and behavior common to all shapes:

contains(x, y)
getColor(), setColor(color)
getHeight(), getWidth(), getLocation(), setLocation(x, y)
getX(), getY(), setX(x), setY(y), move(dx, dy)
setVisible(visible), sendForward(), sendBackward()
toString()

• The subclasses add state and behavior unique to them:
GLabel GLine GPolygon

get/setFont get/setStartPoint addEdge
get/setLabel get/setEndPoint addVertex

get/setFillColor
...

27

Using Inheritance
public class Name extends Superclass {

– Example:

public class Programmer extends Employee {
...

}

• By extending Employee, this tells Java that Programmer can do
everything an Employee can do, plus more.

• Programmer automatically inherits all of the code from Employee!
• The superclass is Employee, the subclass is Programmer.

28

Example: Programmer
public class Programmer extends Employee {

private int timeCoding;
...
public void code() {

timeCoding += 10;
}

}

...

Programmer annie = new Programmer(“Annie”);
annie.code(); // from Programmer
annie.promote(); // from Employee!

29

Example: KarelProgrammer
public class KarelProgrammer extends Programmer {

private int numBeepersPicked;
...
public void pickBeepers() {

numBeepersPicked += 2;
}

}

...
KarelProgrammer colin = new KarelProgrammer(“Colin”);
colin.pickBeepers(); // from KarelProgrammer
colin.code(); // from Programmer!
colin.promote(); // From Employee!

30

Advanced: Overriding
public class KarelProgrammer extends Programmer {

...

@Override
public boolean promote() {

salary *= 3;
return true;

}
}

...
KarelProgrammer colin = new KarelProgrammer(“Colin”);
colin.promote(); // From KarelProgrammer, not Employee!

31

Advanced: Overriding
public class Clicker extends GraphicsProgram {

...

@Override
public void mouseClicked(MouseEvent e) {

// do some stuff
}

}

32

Plan for today
•Announcements
•Review: Classes
•toString
•this
•Practice: Employee
•Inheritance
•Recap

33

Recap
• Classes let us define our own variable types, with their

own instance variables, methods and constructors.
• We can relate our variable types to one another by using

inheritance. One class can extend another to inherit its
behavior.

• We can extend GCanvas in a graphical program to
decompose all of our graphics-related code in one place.

Next time: Interactors and GUIs

