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CS 106A, Lecture 22
More Classes

suggested reading:
Java Ch. 6



2

Plan for today
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Learning Goals
• Know how to define our own variable types
• Know how to define variable types that inherit from other types
• Be able to write programs consisting of multiple classes
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Announcements
•Assignment 5 due/Assignment 6 out Monday
•Reminder: the 106A website’s “Schedule” 

page has lots of neat stuff for each lecture!
–Slides and suggested reading sections
–Starter code and polished solutions for live-

coded programs
–CodeStepByStep practice problems

•Midterm regrade requests can be made on 
Gradescope until 1PM on Monday
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What Is A Class?

A class defines a 
new variable type.
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Classes Are Like Blueprints
iPod blueprint (class)

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

iPod (variable) #1
state:
song = "1,000,000 Miles"
volume = 17
battery life = 2.5 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod (variable) #2
state:
song = "Letting You"
volume = 9
battery life = 3.41 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod (variable) #3
state:
song = "Discipline"
volume = 24
battery life = 1.8 hrs

behavior:
power on/off
change station/song
change volume
choose random song

constructs



9

Creating A New Class
1. What information is inside this new 

variable type?
– These are its instance variables.

2. How do you create a variable of this type?
– This is the constructor.

3. What can this new variable type do?
– These are its public methods.
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Example: BankAccount

Let’s see the code!



11

Plan for today
•Announcements
•Review: Classes
•toString
•this
•Practice: Employee
•Inheritance
•Recap



12

Printing Variables
• By default, Java doesn't know how to print objects.

BankAccount ba1 = new BankAccount("Marty", 1.25);
println("ba1 is " + ba1); // ba1 is BankAccount@9e8c34

// better, but cumbersome to write
println("ba1 is " + ba1.getName() + " with $"

+ ba1.getBalance()); // ba1 is Marty with $1.25

// desired behavior
println("ba1 is " + ba1);   // ba1 is Marty with $1.25



13

The toString Method
A special method in a class that tells Java how to convert an object 
into a string.

BankAccount ba1 = new BankAccount("Marty", 1.25);
println("ba1 is " + ba1);

// the above code is really calling the following:
println("ba1 is " + ba1.toString());

• Every class has a toString, even if it isn't in your code.
– Default: class's name @ object's memory address  (base 16)

BankAccount@9e8c34
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The toString Method
public String toString() {

code that returns a String
representing this object;

}

– Method name, return, and parameters must match exactly.

– Example:
// Returns a String representing this account.
public String toString() {

return name + " has $" + balance;
}
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The “this” Keyword
this: Refers to the object on which a method is currently being 
called

BankAccount ba1 = new BankAccount();
ba1.deposit(5);

// in BankAccount.java
public void deposit(double amount) {

// for code above, “this” -> ba1
...

}
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Using “this”
Sometimes we want to name parameters the same as instance 
variables.

public class BankAccount {
private double balance;
private String name;
...

public void setName(String newName) {
name = newName;

}
}

– Here, the parameter to setName is named newName to be distinct 
from the object's field name .



18

Using “this”
public class BankAccount {

private double balance;
private String name;
...

public void setName(String name) {
name = name;

}
}
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Using “this”
We can use “this” to specify which one is the instance variable 
and which one is the local variable.

public class BankAccount {
private double balance;
private String name;
...

public void setName(String name) {
this.name = name;

}
}
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Practice: Employee
Let’s define a new variable type called Employee 
that represents a single Employee.

What information would an Employee store?

How would you create a new Employee variable?

What could an Employee do?
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Inheritance

Inheritance lets us 
relate our variable 

types to one another.
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Inheritance

Employee

Programmer

Karel 
Programmer

Variable types can seem 
to “inherit” from one 
other.  We don’t want to 
have to duplicate code for 
each one!
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Example: GObjects
• The Stanford library uses an inheritance hierarchy of graphical 

objects based on a common superclass named GObject.
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Example: GObjects
• GObject defines the state and behavior common to all shapes:

contains(x, y)
getColor(), setColor(color)
getHeight(), getWidth(), getLocation(), setLocation(x, y)
getX(), getY(), setX(x), setY(y), move(dx, dy)
setVisible(visible), sendForward(), sendBackward()
toString()

• The subclasses add state and behavior unique to them:
GLabel GLine GPolygon

get/setFont get/setStartPoint addEdge
get/setLabel get/setEndPoint addVertex

get/setFillColor
... ... ..



27

Using Inheritance
public class Name extends Superclass {

– Example:

public class Programmer extends Employee {
...

}

• By extending Employee, this tells Java that Programmer can do 
everything an Employee can do, plus more.

• Programmer automatically inherits all of the code from Employee!
• The superclass is Employee, the subclass is Programmer.
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Example: Programmer
public class Programmer extends Employee {

private int timeCoding;
...
public void code() {

timeCoding += 10;
}

}

...

Programmer annie = new Programmer(“Annie”);
annie.code(); // from Programmer
annie.promote(); // from Employee!
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Example: KarelProgrammer
public class KarelProgrammer extends Programmer {

private int numBeepersPicked;
...
public void pickBeepers() {

numBeepersPicked += 2;
}

}

...
KarelProgrammer colin = new KarelProgrammer(“Colin”);
colin.pickBeepers(); // from KarelProgrammer
colin.code(); // from Programmer!
colin.promote(); // From Employee!
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Advanced: Overriding
public class KarelProgrammer extends Programmer {

...

@Override
public boolean promote() {

salary *= 3;
return true;

}
}

...
KarelProgrammer colin = new KarelProgrammer(“Colin”);
colin.promote(); // From KarelProgrammer, not Employee!
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Advanced: Overriding
public class Clicker extends GraphicsProgram {

...

@Override
public void mouseClicked(MouseEvent e) {

// do some stuff
}

}



32

Plan for today
•Announcements
•Review: Classes
•toString
•this
•Practice: Employee
•Inheritance
•Recap



33

Recap
• Classes let us define our own variable types, with their 

own instance variables, methods and constructors.
• We can relate our variable types to one another by using 

inheritance.  One class can extend another to inherit its 
behavior.

• We can extend GCanvas in a graphical program to 
decompose all of our graphics-related code in one place.

Next time: Interactors and GUIs


