
This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, and others.

CS 106A, Lecture 27
Final Exam Review 1

2

Plan for today
•Announcements/Exam logistics
•Learning Goals
•Graphics, Animation, Events
•Arrays
•ArrayLists

3

Plan for today
•Announcements/Exam logistics
•Learning Goals
•Graphics, Animation, Events
•Arrays
•ArrayLists

4

Final exam
• Is the final exam cumulative?
• What will be tested on the final exam?
• What about all this stuff you aren’t covering today?

– Expressions and Variables
– Java Control Statements
– Console Programs
– Methods, parameters, returns
– Randomness
– Strings and chars
– Scanners and file processing
– Memory

• Is the final exam going to be difficult/curved?
• How can I practice for the final?

Midterm review session
was the recorded section
on Friday of Week 4

5

Practicing for the final
• Review concepts you’re unsure of
• Review programs we wrote in lecture
• Do section problems
• Do practice final under real conditions
• codestepbystep.com

• Colin’s secret test-taking strategy:
– Using BlueBook’s timer, give yourself 3-5 minutes to read and start

writing pseudocode for each problem
– Once you’ve thought about every problem, go back to the one that

seemed easiest and start coding for real
– This is not about finishing every problem; it is about collecting points

http://codestepbystep.com/

6

Plan for today
•Announcements/Exam logistics
•Learning Goals
•Graphics, Animation, Events
•Arrays
•ArrayLists

7

Learning Goals
“After this lecture, I want you to be able to…”

•Lectures 1-3 (Karel): Apply programmatic
thinking and decomposition to logical tasks

•Lecture 4 (Intro to Java): Create variables of
primitive types, perform console I/O, and
evaluate expressions using primitive types

•Lecture 5 (Booleans and Control Flow): Use
loops to perform repeated tasks, use
conditions to decide which tasks to perform

8

Learning Goals
“After this lecture, I want you to be able to…”
•Lecture 6 (Scope): Identify a variable’s scope
•Lecture 7 (Parameters and Return): Write

functions that pass parameters and leverage
return values to overcome the limitation of
scope in program decomposition

9

Learning Goals
“After this lecture, I want you to be able to…”

•Lecture 8 (Characters and Strings): Use

randomness to write interesting programs,

recall that Java understands chars as ASCII

values (ints from 0 - 255), create String

variables, recall that Strings are immutable

10

Learning Goals
“After this lecture, I want you to be able to…”
•Lecture 9 (Problem-Solving with Strings):

Identify situations where common String
methods like length and substring are useful,
solve problems that involve manipulating
Strings (often through creating new Strings)

•Lecture 10 (File Reading): Write programs
that use files as sources of input data

11

Learning Goals
“After this lecture, I want you to be able to…”
•Lectures 11 and 12 (Graphics): Write

programs using five types of graphical
objects (rectangles, ovals, lines, labels, and
images), call methods on Objects

•Lecture 13 (Animation): Use loops and
pausing to animate graphical programs

12

Learning Goals
“After this lecture, I want you to be able to…”
•Lectures 14 (Events): Write programs that

respond to mouse events, identify when it is
appropriate to use instance variables

•Lecture 15 (Memory): Recall that primitives
are passed by value while Objects are passed
by reference in Java, apply that knowledge to
know which variables’ values change when
they are modified in other methods

13

Learning Goals
“After this lecture, I want you to be able to…”
•Lectures 16 (Arrays): Describe the purpose of

data structures in programming, know how
to store data in and retrieve data from arrays

•Lecture 17 (2D Arrays): Recognize 2D arrays
as grids or arrays of arrays, apply nested for
loops to working with 2D arrays

•Lecture 18 (More Arrays): Identify uses for
arrays in writing complex programs

14

Learning Goals
“After this lecture, I want you to be able to…”
•Lectures 19 (ArrayLists): Know how to store

data in and retrieve data from ArrayLists
•Lecture 20 (ArrayLists and HashMaps): Know

how to store data in and retrieve data from
HashMaps, identify the most appropriate
data structure between arrays, ArrayLists,
and HashMaps for different storage needs

15

Learning Goals
“After this lecture, I want you to be able to…”

•Lectures 23 (Interactors and GCanvas): Know

how to create graphical user interfaces

(GUIs) with Java’s interactive components

•Lecture 24 (GCanvas): Write richer graphical

programs leveraging multiple classes

•Lectures 24-26 (BiasBars, Life After CS106A):

Identify real-world challenges where 106A-

level programming knowledge can help

16

Learning Goals
•Assignments gave you practice synthesizing

lots of different topics from lecture
•Exams assess the extent to which you are

able to recall and synthesize learning goals
–Because exams are high-pressure, timed

situations, you don’t need to score
spectacularly for me to believe that you
understand the course’s material

17

Plan for today
•Announcements/Exam logistics
•Learning Goals
•Graphics, Animation, Events
•Arrays
•ArrayLists

18

Graphics
• Look at lecture slides for lists of different GObject types and their

methods
• Remember: the x and y of GRect, GOval, etc. is their upper-left

corner

19

Animation
Standard format for animation code:

while (condition) {
update graphics
pause(PAUSE_TIME);

}

20

Events
• Two ways for Java to run your code: from run() and from event

handlers (mouseClicked, mouseMoved, actionPerformed, etc.)
• Event handlers must have exactly the specified signature; otherwise

they won’t work!
e.g., public void mouseClicked(MouseEvent e)

• If you need access to a variable in an event handler that you use
elsewhere in your code, it should be an instance variable (e.g.,
paddle in Breakout)

21

Plan for today
•Announcements/Exam logistics
•Learning Goals
•Graphics, Animation, Events
•Arrays
•ArrayLists

22

1D Arrays
• An array is a fixed-length list of a single type of thing.
• An array can store primitives and Objects.
• You cannot call methods on arrays, e.g., no myArray.contains()
• Get the length by saying myArray.length. (No parentheses!)
• Print array with Arrays.toString(myArray), not println(myArray)!

[2, 4, 6, 8] [I@4ddced80

23

1D Array Practice
Write the method int longestSortedSequence(int[] array)

e.g. int[] array = {3, 8, 10, 1, 9, 14, -3, 0, 14, 207, 56, 98, 12}

Sorted in this case means nondecreasing, so a sequence could contain duplicates:

e.g. int[] array = {17, 42, 3, 5, 5, 5, 8, 2, 4, 6, 1, 19}

Link: http://www.codestepbystep.com/problem/view/java/arrays/longestSortedSequence

3 3 4 2 1

2 3 25

http://www.codestepbystep.com/problem/view/java/arrays/longestSortedSequence

24

2D Arrays = Arrays of Arrays!
int[][] a = new int[3][4];

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

Outer array

25

Chess
• Knight: moves in an ”L”-shape (two steps in one direction, one step

in a perpendicular direction)

26

knightCanMove()
boolean knightCanMove(String[][] board,

int startRow, int startCol,
int endRow, int endCol)

• (startRow, startCol) must contain a knight
• (endRow, endCol) must be empty
• (endRow, endCol) must be reachable from (startRow, startCol) in a

single move
• Assume that (startRow, startCol) and (endRow, endCol) are within

bounds of array

27

knightCanMove()

0 1 2 3 4 5 6 7

0 ”king”

1 ”knight”

2

3 ”rook”

4

5

6

7

28

0 1 2 3 4 5 6 7

0 ”king”

1 ”knight”

2

3 ”rook”

4

5

6

7

knightCanMove()

0 1 2 3 4 5 6 7

0 ”king”

1 ”knight”

2

3 ”rook”

4

5

6

7

knightCanMove(board, 2, 2, 3, 4)

No knight at (2, 2)

returns false

29

0 1 2 3 4 5 6 7

0 ”king”

1 ”knight”

2

3 ”rook”

4

5

6

7

knightCanMove()

0 1 2 3 4 5 6 7

0 ”king”

1 ”knight”

2

3 ”rook”

4

5

6

7

knightCanMove(board, 1, 2, 0, 4)

Space occupied

returns false

30

knightCanMove()

0 1 2 3 4 5 6 7

0 ”king”

1 ”knight”

2

3 ”rook”

4

5

6

7

knightCanMove(board, 1, 2, 3, 2)

(1, 2) to (3, 2) is not a valid move

returns false

31

knightCanMove()

0 1 2 3 4 5 6 7

0 ”king”

1 ”knight”

2

3 ”rook”

4

5

6

7

knightCanMove(board, 1, 2, 3, 3)

Knight is at (1, 2) and (3, 3) is empty
and (1, 2) -> (3, 3) is a valid move

returns true

32

knightCanMove()
// This method returns true if the starting square contains a knight,
// the end square is empty, and the knight can legally move from the
// start square to the end square.
private boolean knightCanMove(String[][] board, int startRow,

int startCol, int endRow, int endCol) {

}

33

knightCanMove()
// This method returns true if the starting square contains a knight,
// the end square is empty, and the knight can legally move from the
// start square to the end square.
private boolean knightCanMove(String[][] board, int startRow,

int startCol, int endRow, int endCol) {
if (board[startRow][startCol].equals("knight")) {

}

}

34

knightCanMove()
// This method returns true if the starting square contains a knight,
// the end square is empty, and the knight can legally move from the
// start square to the end square.
private boolean knightCanMove(String[][] board, int startRow,

int startCol, int endRow, int endCol) {
if (board[startRow][startCol].equals("knight")) {

if (board[endRow][endCol].equals("")) {

}
}

}

35

knightCanMove()
// This method returns true if the starting square contains a knight,
// the end square is empty, and the knight can legally move from the
// start square to the end square.
private boolean knightCanMove(String[][] board, int startRow,

int startCol, int endRow, int endCol) {
if (board[startRow][startCol].equals("knight")) {

if (board[endRow][endCol].equals("")) {
int rowDifference = Math.abs(startRow - endRow);
int colDifference = Math.abs(startCol - endCol);
if ((rowDifference == 1 && colDifference == 2) ||

(rowDifference == 2 && colDifference == 1)) {
return true;

}
}

}

}

36

knightCanMove()
// This method returns true if the starting square contains a knight,
// the end square is empty, and the knight can legally move from the
// start square to the end square.
private boolean knightCanMove(String[][] board, int startRow,

int startCol, int endRow, int endCol) {
if (board[startRow][startCol].equals("knight")) {

if (board[endRow][endCol].equals("")) {
int rowDifference = Math.abs(startRow - endRow);
int colDifference = Math.abs(startCol - endCol);
if ((rowDifference == 1 && colDifference == 2) ||

(rowDifference == 2 && colDifference == 1)) {
return true;

}
}

}
return false;

}

37

Plan for today
•Announcements/Exam logistics
•Learning Goals
•Graphics, Animation, Events
•Arrays
•ArrayLists

38

ArrayList
• An ArrayList is a flexible-length list of a single type of thing.
• An ArrayList can only store Objects.

– For primitives, use ArrayList<Integer> instead of ArrayList<int>.
(Integer is a wrapper class for int)

– Other wrapper classes: Double instead of double, Character instead of
char, Boolean instead of boolean.

• An ArrayList has a variety of methods you can use like .contains,
.get, .add, .remove, .size, etc.

39

Array vs ArrayList
• Array

– Fixed size
– Efficient (not a concern in this class)
– No methods, can only use myArray.length (no parentheses!)
– Can store any object or primitive

• ArrayList
– Expandable
– Less efficient than Array (not a concern in this class)
– Convenient methods like .add(), .remove(), .contains()
– Cannot store primitives, so use their wrapper classes instead

40

deleteDuplicates()
private void deleteDuplicates(ArrayList<String> list)

• Guaranteed that list is in sorted order
• {"be", "be", "is", "not", "or", "question", "that", "the", "to", "to"}

becomes {“be”, “is”, “not”, “or”, “question”, “that”, “the”, “to”}

• Solution strategy:
– Loop through ArrayList
– Compare pairs of elements
– If element.equals(nextElement), remove element from the list

41

deleteDuplicates
• Loop through ArrayList
• Compare pairs of elements
• If element.equals(nextElement), remove element from the list

42

deleteDuplicatesReverse
• Loop through ArrayList in reverse
• Compare pairs of elements
• If element.equals(previousElement), remove element from the list

43

Recap
•Announcements/Exam logistics
•Learning Goals
•Graphics, Animation, Events
•Arrays
•ArrayLists

Next time: Final Exam Review 2

