
This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, and others.

CS 106A, Lecture 5
Booleans and Control Flow

suggested reading:
Java Ch. 3.4-4.6

2

Plan For Today
•Announcements
•Recap: Java, Variables and Expressions
•Aside: Shorthand Operators + Constants
•Revisiting Control Flow

–If and While
–For

3

Plan For Today
•Announcements
•Recap: Java, Variables and Expressions
•Aside: Shorthand Operators + Constants
•Revisiting Control Flow

–If and While
–For

4

Announcements
•Everything canceled on Wednesday (7/4)

–Lecture and LaIR are just not happening
–Wednesday sections have been rescheduled

•Go to your section leader’s if you can; otherwise,
go to a different rescheduled section

•Assignment 1 due Thursday at 11AM
•Debugger tutorial up on website

5

Plan For Today
•Announcements
•Recap: Java, Variables and Expressions
•Aside: Shorthand Operators + Constants
•Revisiting Control Flow

–If and While
–For

6

Java

Karel Program Graphics ProgramConsole Program

SuperKarel Program

Program

7

Console I/O
• println allows out to output text to the user via the console

– Output is the “O” in “I/O”
• We can also get input from the user via the console!

– Use variables to store data collected via readInt, readDouble, etc.

8

Expressions
• You can combine literals or variables together into expressions

using binary operators:

Addition
Subtraction

*
/ Division
% Remainder

+
–

Multiplication

9

Integer division, remainder
• When we divide integers, the quotient is also an integer.

14 / 4 is 3, not 3.5 . (Java ALWAYS rounds down.)

3 4 52
4) 14 10) 45 27) 1425

12 40 135
2 5 75

54
21

• More examples:
– 32 / 5 is 6 32 % 5 is 2
– 84 / 10 is 8 84 % 10 is 4
– 156 / 100 is 1 156 % 100 is 56

– Dividing by 0 using /or % causes an error when your program runs.

%

/

10

Type Interactions

int and int results in an int
double and double results in a double

int and double results in a double

* The general rule is: operations always return the most expressive type

String and int results in a String

etc.

11

Precedence
• precedence: Order in which operators are evaluated.

– Generally operators evaluate left-to-right.
1 - 2 - 3 is (1 - 2) - 3 which is -4

– But * / % have a higher level of precedence than + -
1 + 3 * 4 is 13

6 + 8 / 2 * 3
6 + 4 * 3
6 + 12 is 18

– Parentheses can alter order of evaluation, but spacing does not:
(1 + 3) * 4 is 16
1+3 * 4-2 is 11

12

Practice

•1 / 2 0
•1.0 / 2 0.5
•1 + 2 / 3 1
•"abc" + (4 + 2) "abc6"
•"abc" + 4 + 2 "abc42"

13

Variable Types

int – an integer number

double – a decimal number

char – a single character

boolean – true or false

14

Making a new Variable

int myVariable;

type name

15

Assignment

myVariable = 2;

Existing variable name value

16

Declare / initialize
• A variable can be declared/initialized in one statement.

– This is probably the most commonly used declaration syntax.

• Syntax:

type name = expression;

double tempF = 98.6;

int x = (12 / 2) + 3;
x 9

tempF 98.6

17

Plan For Today
•Announcements
•Recap: Variables and Expressions
•Aside: Shorthand Operators + Constants
•Revisiting Control Flow

–If and While
–For

18

Shorthand Operators
Shorthand Equivalent longer version
variable += value; variable = variable + value;
variable -= value; variable = variable - value;
variable *= value; variable = variable * value;
variable /= value; variable = variable / value;
variable %= value; variable = variable % value;

variable++; variable = variable + 1;
variable--; variable = variable – 1;

x -= 3; // x = x - 3;
number *= 2; // number = number * 2;
x++; // x = x + 1;

19

Constants
• constant: A variable that cannot be changed after it is initialized.

Declared at the top of your class, outside of the run() method but inside
public class Name. Can be used anywhere in that class.

• Better style – can easily change their values in your code, and they are
easier to read in your code.

• Syntax:
private static final type name = value;

– name is usually in ALL_UPPER_CASE

– Examples:
private static final int DAYS_IN_WEEK = 7;
private static final double INTEREST_RATE = 3.5;

20

Receipt Program - Before
public class Receipt extends ConsoleProgram {

public void run() {

double subtotal = readDouble(”Meal cost? $”);
double tax = subtotal * 0.08;

double tip = subtotal * 0.20;

double total = subtotal + tax + tip;

println(“Tax : $” + tax);
println(“Tip: $” + tip);

println(“Total: $” + total);

}

}

21

Receipt Program – After
public class Receipt extends ConsoleProgram {

private static final double TAX_RATE = 0.08;

private static final double TIP_RATE = 0.2;

public void run() {

double subtotal = readDouble(”Meal cost? $”);

double tax = subtotal * TAX_RATE;

double tip = subtotal * TIP_RATE;

double total = subtotal + tax + tip;

println("Tax : $” + tax);

println("Tip: $” + tip);

println(”Total: $" + total);

}
}

22

Plan For Today
•Announcements
•Recap: Variables and Expressions
•Aside: Shorthand Operators + Constants
•Revisiting Control Flow

–If and While
–For

23

If/Else in Karel
if (condition) {

statement;
statement;

...
} else {

statement;

statement;

...

}
Runs the first group of statements if condition is true; otherwise, runs
the second group of statements.

24

While Loops in Karel
while (condition) {

statement;
statement;

...
}

Repeats the statements in the body until condition is no longer true.
Each time, Karel executes all statements, and then checks the condition.

25

Conditions in Karel

while (frontIsClear()) {
body

}

if (beepersPresent()) {
body

}

26

Conditions in Java

while (condition) {
body

}

if (condition) {
body

}

The condition should be a “boolean” which
is either true or false

27

Booleans

1 < 2

28

Booleans

1 < 2
true

29

Relational Operators

Operator Meaning Example Value
== equals 1 + 1 == 2 true

!= does not equal 3.2 != 2.5 true

< less than 10 < 5 false

> greater than 10 > 5 true

<= less than or equal to 126 <= 100 false

>= greater than or equal to 5.0 >= 5.0 true

* All have equal precedence

30

Relational Operators

Operator Meaning Example Value
== equals 1 + 1 == 2 true

!= does not equal 3.2 != 2.5 true

< less than 10 < 5 false

> greater than 10 > 5 true

<= less than or equal to 126 <= 100 false

>= greater than or equal to 5.0 >= 5.0 true

* All have equal precedence

31

Relational Operators
if (1 < 2) {

println("1 is less than 2!");

}

int num = readInt("Enter a number: ");

if (num == 0) {
println("That number is 0!");

} else {

println("That number is not 0.");

}

32

Practice: Sentinel Loops
• sentinel: A value that signals the end of user input.

– sentinel loop: Repeats until a sentinel value is seen.

• Example: Write a program that prompts the user for numbers until
the user types -1, then output the sum of the numbers.
– In this case, -1 is the sentinel value.

Type a number: 10
Type a number: 20
Type a number: 30
Type a number: -1
Sum is 60

33

Practice: Sentinel Loops
// fencepost problem!

// ask for number - post

// add number to sum - fence

int sum = 0;
int num = readInt("Enter a number: ");
while (num != -1) {

sum += num;
num = readInt("Enter a number: ");

}
println("Sum is " + sum);

34

Practice: Sentinel Loops
// fencepost problem!

// ask for number - post

// add number to sum - fence

private static final int SENTINEL = -1;

int sum = 0;
int num = readInt("Enter a number: ");
while (num != SENTINEL) {

sum += num;
num = readInt("Enter a number: ");

}
println("Sum is " + sum);

(outside of run())

35

Practice: Sentinel Loops
// Solution #2: ”break” out of the loop
// ONLY appropriate to use in fencepost cases

int sum = 0;
while (true) {

int num = readInt("Enter a number: ");
if (num == -1) {

break; // immediately exits loop
}
sum += num;

}
println("Sum is " + sum);

Colin prefers this solution, but the debate
of how to solve the “loop-and-a-half”

problem has been raging for >50 years!

36

Logical Operators

Operator Description Example Result

! not !(2 == 3) true

&& and (2 == 3) && (-1 < 5) false

|| or (2 == 3) || (-1 < 5) true

Cannot "chain" tests as in algebra; use && or || instead

// assume x is 15 // correct version
2 <= x <= 10 2 <= x && x <= 10
true <= 10 true && false
Error! false

In order of precedence:

37

Precedence Madness
Precedence: arithmetic > relational > logical

5 * 7 >= 3 + 5 * (7 – 1) && 7 <= 11
5 * 7 >= 3 + 5 * 6 && 7 <= 11
35 >= 3 + 30 && 7 <= 11
35 >= 33 && 7 <= 11
true && true
true

38

Boolean Variables
// Store expressions that evaluate to true/false

boolean x = 1 < 2; // true

boolean y = 5.0 == 4.0; // false

39

Boolean Variables
// Store expressions that evaluate to true/false

boolean x = 1 < 2; // true

boolean y = 5.0 == 4.0; // false

// Directly set to true/false

boolean isFamilyVisiting = true;

boolean isRaining = false;

40

Boolean Variables
// Store expressions that evaluate to true/false

boolean x = 1 < 2; // true

boolean y = 5.0 == 4.0; // false

// Directly set to true/false

boolean isFamilyVisiting = true;

boolean isRaining = false;

// Ask the user a true/false (yes/no) question
boolean playAgain = readBoolean("Play again?”, "y", "n");

if (playAgain) {
...

41

Practice: GuessMyNumber
• Let’s write a program called GuessMyNumber that prompts the user

for a number until they guess our secret number.
• If a guess is incorrect, the program should provide a hint;

specifically, whether the guess is too high or too low.

42

Summary: Conditions

while (condition) {
body

}

if (condition) {
body

}

The condition should be a boolean which is
either true or false

43

Plan For Today
•Announcements
•Recap: Variables and Expressions
•Aside: Shorthand Operators + Constants
•Revisiting Control Flow

–If and While
–For

44

For Loops in Karel
for (int i = 0; i < max; i++) {

statement;

statement;

...

}

Repeats the statements in the body max times.

45

For Loops in Java

for (int i = 0; i < 3; i++) {

println("I love CS 106A!");

}

This code is
 run

once, just before

the for loop
 starts

This code is run each time the code gets to the end of the ‘body’

Repeats the loop
if this condition

passes

46

For Loops in Java

for (int i = 0; i < 3; i++) {

println("I love CS 106A!");

}

For Loop Redux

47

For Loops in Java

for (int i = 0; i < 3; i++) {

println("I love CS 106A!");

}

For Loop Redux

i 0

48

for (int i = 0; i < 3; i++) {

println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 0

49

for (int i = 0; i < 3; i++) {

println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 0

I love CS 106A!

50

for (int i = 0; i < 3; i++) {

println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 0

I love CS 106A!

51

for (int i = 0; i < 3; i++) {

println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 1

I love CS 106A!

52

for (int i = 0; i < 3; i++) {

println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 1

I love CS 106A!

53

for (int i = 0; i < 3; i++) {

println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 1

I love CS 106A!
I love CS 106A!

54

for (int i = 0; i < 3; i++) {

println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 2

I love CS 106A!
I love CS 106A!

55

for (int i = 0; i < 3; i++) {

println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 2

I love CS 106A!
I love CS 106A!

56

for (int i = 0; i < 3; i++) {

println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 2

I love CS 106A!
I love CS 106A!
I love CS 106A!

57

for (int i = 0; i < 3; i++) {

println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 3

I love CS 106A!
I love CS 106A!
I love CS 106A!

58

for (int i = 0; i < 3; i++) {

println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

i 3

I love CS 106A!
I love CS 106A!
I love CS 106A!

59

for (int i = 0; i < 3; i++) {

println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

I love CS 106A!
I love CS 106A!
I love CS 106A!

60

for (int i = 0; i < 3; i++) {

println("I love CS 106A!");

}

For Loops in Java

For Loop Redux

I love CS 106A!
I love CS 106A!
I love CS 106A!

61

Using the For Loop Variable

// prints the first 100 even numbers
for (int i = 0; i < 100; i++) {

println(i * 2);
}

62

Using the For Loop Variable

// Adds up the first 100 numbers
int sum = 0;
for (int i = 0; i < 100; i++) {

sum += i;
}
println("The sum is " + sum);

63

Using the For Loop Variable
// Launch countdown
for (int i = 10; i >= 1; i--) {

println(i);
}
println("Blast off!");

10
9
8
…
1
Blast off!

Output:

64

Recap
•Announcements
•Recap: Variables and Expressions
•Aside: Shorthand Operators + Constants
•Revisiting Control Flow

–If and While
–For

Next time: More control flow, methods in Java

65

[Extra] If/*Else If*/Else
if (condition1) {

...
} else if (condition2) { // NEW

...

} else {
...

}

Runs the first group of statements if condition1 is true; otherwise,
runs the second group of statements if condition2 is true; otherwise,
runs the third group of statements.

You can have multiple else if clauses together.

66

[Extra] If/*Else If*/Else
int num = readInt("Enter a number: ");

if (num > 0) {

println("Your number is positive");
} else if (num < 0) {

println("Your number is negative");

} else {

println("Your number is 0");

}

