
This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, and others.

CS 106A, Lecture 6
Scope and Parameters

suggested reading:
Java Ch. 5.1-5.4

2

Plan For Today
•Announcements
•Recap: Control Flow in Java
•Nested Loops
•Methods in Java
•Scope
•Parameters

3

Announcements
•Sections are finalized today at 5PM

–Email cs198@cs.stanford.edu if you have a
schedule conflict with your current section

–Fill out Annie’s form if you have a partner in
mind and want to swap into their section

mailto:cs198@cs.stanford.edu

4

Plan For Today
•Announcements
•Recap: Control Flow in Java
•Nested Loops
•Methods in Java
•Scope
•Parameters

5

Conditions in Java

while(condition) {
body

}

if(condition) {
body

}

The condition should be a “boolean” which
is either true or false

6

Booleans

1 < 2
true

7

Relational Operators

Operator Meaning Example Value
== equals 1 + 1 == 2 true

!= does not equal 3.2 != 2.5 true

< less than 10 < 5 false

> greater than 10 > 5 true

<= less than or equal to 126 <= 100 false

>= greater than or equal to 5.0 >= 5.0 true

* All have equal precedence

8

Practice: Sentinel Loops
• sentinel: A value that signals the end of user input.

– sentinel loop: Repeats until a sentinel value is seen.

• Example: Write a program that prompts the user for numbers until
the user types -1, then output the sum of the numbers.
– In this case, -1 is the sentinel value.

Type a number: 10
Type a number: 20
Type a number: 30
Type a number: -1
Sum is 60

9

Practice: Sentinel Loops
// fencepost problem!

// ask for number - post

// add number to sum - fence

int sum = 0;
int num = readInt("Enter a number: ");
while (num != -1) {

sum += num;
num = readInt("Enter a number: ");

}
println("Sum is " + sum);

10

Practice: Sentinel Loops
// Solution #2: ”break” out of the loop
// ONLY appropriate to use in fencepost cases

int sum = 0;
while (true) {

int num = readInt("Enter a number: ");
if (num == -1) {

break; // immediately exits loop
}
sum += num;

}
println("Sum is " + sum);

Colin prefers this solution, but the debate
of how to solve the “loop-and-a-half”

problem has been raging for >50 years!

11

Compound Expressions

Operator Description Example Result

! not !(2 == 3) true

&& and (2 == 3) && (-1 < 5) false

|| or (2 == 3) || (-1 < 5) true

Cannot "chain" tests as in algebra; use && or || instead

// assume x is 15 // correct version
2 <= x <= 10 2 <= x && x <= 10
true <= 10 true && false
Error! false

In order of precedence:

12

Boolean Variables
// Store expressions that evaluate to true/false

boolean x = 1 < 2; // true

boolean y = 5.0 == 4.0; // false

// Directly set to true/false

boolean isFamilyVisiting = true;

boolean isRaining = false;

// Ask the user a true/false (yes/no) question
boolean playAgain = readBoolean("Play again?”, "y", "n");

if (playAgain) {
...

13

If/Else If/Else
if (condition1) {

...
} else if (condition2) { // NEW

...

} else {
...

}

Runs the first group of statements if condition1 is true; otherwise,
runs the second group of statements if condition2 is true; otherwise,
runs the third group of statements.

You can have multiple else if clauses together.

14

If/Else If/Else
int num = readInt("Enter a number: ");

if (num > 0) {

println("Your number is positive");
} else if (num < 0) {

println("Your number is negative");

} else {

println("Your number is 0");

}

15

For Loops in Java

for (int i = 0; i < 3; i++) {

println("I love CS 106A!");

}

This code is
 run

once, just before

the for loop
 starts

This code is run each time the code gets to the end of the ‘body’

Repeats the loop
if this condition

passes

16

Using the For Loop Variable
// Launch countdown
for(int i = 10; i >= 1; i--) {

println(i);
}
println("Blast off!");

10
9
8
…
Blast off!

Output:

17

Plan For Today
•Announcements
•Recap: Control Flow in Java
•Nested Loops
•Methods in Java
•Scope
•Parameters

18

Nested loops
• nested loop: A loop placed inside another loop.

for (int i = 0; i < 5; i++) {
for (int j = 0; j < 10; j++) {

print("*");
}
println(); // to end the line

}

• Output:

• The outer loop repeats 5 times; the inner one 10 times.

19

Nested loop question
• Q: What output is produced by the following code?

for (int i = 0; i < 5; i++) {
for (int j = 0; j < i + 1; j++) {

print("*");
}
println();

}

A. B. C. D. E.
***** ***** * 1 12345
***** **** ** 22
***** *** *** 333
***** ** **** 4444
***** * ***** 55555

(How would you modify the code to produce each output above?)

20

Nested loop question 2
• How would we produce the following output?

....1

...22

..333

.4444
55555

21

Nested loop question 2
• How would we produce the following output?

....1

...22

..333

.4444
55555

• Answer:
for (int i = 0; i < 5; i++) {

}

22

Nested loop question 2
• How would we produce the following output?

....1

...22

..333

.4444
55555

• Answer:
for (int i = 0; i < 5; i++) {

for (int j = 0; j < 5 – i - 1; j++) {
print(".");

}

}

23

Nested loop question 2
• How would we produce the following output?

....1

...22

..333

.4444
55555

• Answer:
for (int i = 0; i < 5; i++) {

for (int j = 0; j < 5 – i - 1; j++) {
print(".");

}
for (int j = 0; j <= i; j++) {

print(i + 1);
}

}

24

Nested loop question 2
• How would we produce the following output?

....1

...22

..333

.4444
55555

• Answer:
for (int i = 0; i < 5; i++) {

for (int j = 0; j < 5 – i - 1; j++) {
print(".");

}
for (int j = 0; j <= i; j++) {

print(i + 1);
}
println();

}

25

Plan For Today
•Announcements
•Recap: Control Flow in Java
•Nested Loops
•Methods in Java
•Scope
•Parameters

26

Defining New Commands in Karel

We can make new commands (or methods) for Karel. This lets us
decompose our program into smaller pieces that are easier to
understand.

private void turnRight() {
turnLeft();
turnLeft();
turnLeft();

}

private void name() {
statement;
statement;
...

}

For example:

27

Methods in Java

We can define new methods in Java just like in Karel:

private void printGreeting() {
println("Hello world!");
println("I hope you have a great day.");

}

private void name() {
statement;
statement;
...

}

For example:

28

Methods in Java
public void run() {

int x = 2;
printX();

}

private void printX() {
// ERROR! "Undefined variable x"
println("X has the value " + x);

}

29

Plan For Today
•Announcements
•Recap: Control Flow in Java
•Nested Loops
•Methods in Java
•Scope
•Parameters

30

By Chris Piech

This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, and others.

Once upon a time…

32

There was a variable named x
int x = 5;
if (lookingForLove()) {
int y = 5;

}
println(x + y);

x
5

33

…x was looking for love!
int x = 5;
if (lookingForLove()) {
int y = 5;

}
println(x + y);

x
5

x was definitely
looking for love

34

And met y.
int x = 5;
if (lookingForLove()) {
int y = 5;

}
println(x + y);

x
5

y
5

35

And met y.
int x = 5;
if (lookingForLove()) {
int y = 5;

}
println(x + y);

x
5

y
5 Hi, I’m y

This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, and others.

“Wow!”

37

And met y.
int x = 5;
if (lookingForLove()) {
int y = 5;

}
println(x + y);

x
5

y
5Wow

38

And met y.
int x = 5;
if (lookingForLove()) {
int y = 5;

}
println(x + y);

x
5

y
5 We have so much

in common

39

And met y.
int x = 5;
if (lookingForLove()) {
int y = 5;

}
println(x + y);

x
5

y
5 We both have

value 5!

40

And met y.
int x = 5;
if (lookingForLove()) {
int y = 5;

}
println(x + y);

x
5

y
5 Maybe sometime

we can…

41

And met y.
int x = 5;
if (lookingForLove()) {
int y = 5;

}
println(x + y);

x
5

y
5 println together?

This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, and others.

It was a beautiful match…

This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, and others.

…but then tragedy struck.

44

Tragedy Strikes
int x = 5;
if (lookingForLove()) {
int y = 5;

}
println(x + y);

x
5

y
5

45

Tragedy Strikes
int x = 5;
if (lookingForLove()) {
int y = 5;

}
println(x + y);

x
5

This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, and others.

Noooooooooooooooo!

This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, and others.

You see…
when a program exits a code block,

all variables declared inside that block go away!

48

Since y is inside the if-block…

int x = 5;
if (lookingForLove()) {
int y = 5;

}
println(x + y);

x
5

49

…it goes away here…

int x = 5;
if (lookingForLove()) {
int y = 5;

}
println(x + y);

x
5

50

…and doesn’t exist here.

int x = 5;
if (lookingForLove()) {
int y = 5;

}
println(x + y);

x
5

Error.
Undefined
variable y.

This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, and others.

The End

This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, and others.

Sad times L

53

Variable Scope
• The scope of a variable refers to the section

of code where a variable can be accessed.
• Scope starts where the variable is declared.
• Scope ends at the termination of the code

block in which the variable was declared.

• A code block is a chunk of code between { }
braces

54

Variable Scope
Variables have a lifetime (called scope):

public void run() {
double v = 8;
if (condition) {

v = 4;
… some code

}
… some other code

}

55

Variable Scope
Variables have a lifetime (called scope):

public void run() {
double v = 8;
if (condition) {

v = 4;
… some code

}
… some other code

}

56

Variable Scope
Variables have a lifetime (called scope):

public void run() {
double v = 8;
if (condition) {

v = 4;
… some code

}
… some other code

} v

Comes to life here

8

57

Variable Scope
Variables have a lifetime (called scope):

public void run() {
double v = 8;
if (condition) {

v = 4;
… some code

}
… some other code

}

This is the inner most
code block in which it was

declared….

v
4

58

Variable Scope
Variables have a lifetime (called scope):

public void run() {
double v = 8;
if (condition) {

v = 4;
… some code

}
… some other code

} v
4

Still alive here…

59

Variable Scope
Variables have a lifetime (called scope):

public void run() {
double v = 8;
if (condition) {

v = 4;
… some code

}
… some other code

} v
4

It goes away here (at the end of its code block)

60

Variable Scope
Variables have a lifetime (called scope):

public void run() {
double v = 8;
if (condition) {

v = 4;
… some code

}
… some other code

}
It goes away here (at the end of its code block)

This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, and others.

62

Variable Scope
Variables have a lifetime (called scope):

public void run() {
… some code
if (condition) {

int w = 4;
… some code

}
… some other code

}

w goes away
here (at the

end of its code
block)

w is created here

63

Variable Scope
Variables have a lifetime (called scope):

public void run() {
… some code
if (condition) {

int w = 4;
… some code

}
… some other code

}

This is the scope of w

64

Variable Scope
You cannot have two variables with the same
name in the same scope.

for (int i = 1; i <= 100; i++) {
int i = 2; // ERROR
print("/");

}

65

Variable Scope
You cannot have two variables with the same
name in the same scope.

for (int i = 1; i <= 100; i++) {
while (...) {

int i = 5; // ERROR
}

}

66

Variable Scope
You can have two variables with the same
name in separate scopes.

public void run() {
for (int i = 0; i < 5; i++) { // i ok here
int w = 2; // w ok here

}

for (int i = 0; i < 2; i++) { // i ok here
int w = 3; // w ok here

}
}

67

Variable Scope
You can have two variables with the same
name in separate scopes.

public void run() {
int num = 5;
cow();
println(num); // prints 5

}

private void cow() {
int num = 10;
println(num); // prints 10

}

68

Variable Scope
You can have two variables with the same
name in different scopes.

public void run() {
int num = 5;
cow();
println(num);

}

private void cow() {
int num = 10;
println(num);

}

run

num
5

69

Variable Scope
You can have two variables with the same
name in different scopes.

public void run() {
int num = 5;
cow();
println(num);

}

private void cow() {
int num = 10;
println(num);

}

run

num

5cow

70

Variable Scope
You can have two variables with the same
name in different scopes.

public void run() {
int num = 5;
cow();
println(num);

}

private void cow() {
int num = 10;
println(num);

}

run

num

5cow

num

10

71

Variable Scope
You can have two variables with the same
name in different scopes.

public void run() {
int num = 5;
cow();
println(num);

}

private void cow() {
int num = 10;
println(num);

}

run

num

5cow

num

10

72

Variable Scope
You can have two variables with the same
name in different scopes.

public void run() {
int num = 5;
cow();
println(num);

}

private void cow() {
int num = 10;
println(num);

}

run

num
5

73

Revisiting Sentinel Loops
// sum must be declared outside of the loop!
// Otherwise, it will be redeclared many times
// num must be declared outside of the loop!
// Otherwise, the loop condition makes no sense
int sum = 0;
int num = readInt("Enter a number: ");
while (num != -1) {

sum += num;
num = readInt("Enter a number: ");

}
println("Sum is " + sum);

74

Revisiting Sentinel Loops
// Here, num goes out of scope at the end of
// each loop iteration. At that point, we have
// already used its value and can discard it.
int sum = 0;
while (true) {

int num = readInt("Enter a number: ");
if (num == -1) {

break; // immediately exits loop
}
sum += num;

}
println("Sum is " + sum);

75

By Chris
Chapter 2

This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, and others.

The programmer fixed the bug

77

There was a variable named x.
int x = 5;
if (lookingForLove()) {
int y = 5;
println(x + y);

}

x
5

78

…x was looking for love!
int x = 5;
if (lookingForLove()) {
int y = 5;
println(x + y);

}

x
5

x was definitely
looking for love

79

And met y.
int x = 5;
if (lookingForLove()) {
int y = 5;
println(x + y);

}

x
5

y
5

80

Since they were both “in scope”…

int x = 5;
if (lookingForLove()) {
int y = 5;
println(x + y);

}

x
5

y
5

This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, and others.

…they lived happily ever after.
The end.

82

Plan For Today
•Announcements
•Recap: Control Flow in Java
•Nested Loops
•Methods in Java
•Scope
•Parameters

83

Variable Scope
public void run() {

int x = 2;
printX();

}

private void printX() {
// ERROR! "Undefined variable x"
println("X has the value " + x);

}

84

Parameters

Parameters let you provide a
method some information

when you are calling it.

85

Methods = Toasters

86

Methods = Toasters

parameter

87

Methods = Toasters

parameter

88

Methods = Toasters

parameter

89

Methods = Toasters

parameter

90

Methods = Toasters

Invalid parameter

91

Methods = Toasters

92

Drawing boxes
• Consider the task of printing the following boxes:

* *
* *

* *
* *
* *
* *

– The code to draw each box will be very similar.
• Would variables help? Would constants help?

93

Wouldn’t it be nice if…

drawBox(10, 4);

Continued next time…

