
This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, Nick Troccoli, Julia Daniel and others.

CS106A Midterm Review Session
Annie Hu
Summer 2018

Logistics

2

•Closed-book, closed-notes

•Two double-sided sheets of notes allowed

•You will be provided a reference sheet

•Download BlueBook ahead of time

•Bring your laptop + charger!

•Functionality should be your main goal, but good style
often goes hand in hand with good functionality

Major Topics

3

•Karel

•Expressions and Variables

•JavaControl Statements

•Methods, parameters, returns

•Randomness

•Characters andStrings

•Scanners and File processing

•Graphics Programs

•Memory andTracing

Karel

4

•Tips:
–Pseudocode first
–Decompose theproblem
–Only Karel features!
-Not allowed:

•Variables (other than int i in for loop

•Parameters / return
•break

5

Karel the Robot

Expressions and Variables

6

•int count = 0;
•double height = 5.2;
•boolean readyForMidterm = true;
•char letter = ‘a’;
•String str = “I love CS106A!”;

•(which of these are primitives?)
7

Variables

•Evaluate:

3.0 * (23 % 5) / 2 + 2 * 7 / 3 = 8.5
13 / 2 / 2.0 + 5 / 2.0 / 2 = 4.25
6 == 3 * 2 && !(7 < 6) && 1 + 1 != 3 = true
2 + 2 + “[“ + 4 * 2 + “]” + 3 + 5 = “4[8]35”

8

Expressions

•Evaluate:

3.0 * (23 % 5) / 2 + 2 * 7 / 3 = 8.5
13 / 2 / 2.0 + 5 / 2.0 / 2 = 4.25
6 == 3 * 2 && !(7 < 6) && 1 + 1 != 3 = true
2 + 2 + “[“ + 4 * 2 + “]” + 3 + 5 = “4[8]35”

9

Expressions

Java Control Statements

10

•if
•do something once if a condition is true

•while
•do something while a condition is true

•for
•do something a given number of times

11

Java Control Statements

•Read in user input until you hit the SENTINEL

•Iterate through a string

•Move Karel to a wall

•Put down 8 beepers

12

WHILE

FOR

WHILE

FOR

For or While?

•Loop over a set of statements, but do some part of those
statements one additional time

•Frequently comes up in Karel and user input
•Can use loop-and-a-half

13

The “Fencepost” Structure

putBeeper(); // post
while (frontIsClear()) {

move(); // fence
putBeeper(); // post

}

int sum = 0;
while (true) {

int num = readInt(“Number? “);
// half-loop
if (num == -1) break;
sum += num;

}
println(“Sum is “ + sum);

Methods, Parameters,
and Returns (oh my!)

14

Methods let you define
custom Javacommands.

15

Java Constructs - Methods

Parameters let you providea
method some information

when you are callingit.

16

Java Constructs - Methods

Return values let you give
back some informationwhen

a method is finished.

17

Java Constructs: Methods

parameter

18

Java Constructs - Methods

method

parameter

Java Constructs - Methods

19

method

Java Constructs - Methods

20

method

return

21

Java Constructs - Methods

method

int x = readInt(”Your guess? ");

22

Example: readInt

int x = readInt(”Your guess? ");

We give readInt some
information (the text to

print to the user)

We call
readInt

Example: readInt

23

When we include values in the parentheses of a method call,
this means we are passing them as parameters to this

method.

int x = readInt(”Your guess? ");

24

Example: readInt

When finished, readInt gives
us information back (the user’s

number) and we put it in x.

int x = readInt(”Your guess? ");

Example: readInt

25

When we set a variable equal to a method, this tells Java
to save the return value of the method in that variable.

int x = readInt(”Your guess? ");

26

Example: readInt

void drawBlueRect(int width, int height) {
width and height
draw a rect at 0,

variables
0

private
// use
// to

}

Tells Java this method
needs two ints in order to

execute.

Parameters: drawBlueRect

27

void drawBlueRect(int width, int height) {
width and height
draw a rect at 0,

variables
0

private
// use
// to

}

Inside drawBlueRect, refer to
the first parameter value as

width…

Parameters: drawBlueRect

28

void drawBlueRect(int width, int height) {
width and height
draw a rect at 0,

variables
0

private
// use
// to

}

…and the second
parameter value as height.

Parameters: drawBlueRect

29

drawBlueRect(50, 20);

We give drawBlueRect
some information (the size

of the rect we want)

We call
drawBlueRect

Parameters: drawBlueRect

30

= ... 70
= ... 40

31

int width
int height
...

70
drawBlueRect(width,

40
height);

Parameters: drawBlueRect

// to draw

32

a rect at 0, 0
}

70 40
private void drawBlueRect(int width, int height) {

// use width and height variables

Parameters: drawBlueRect

private void drawBlueRect(int width, int height) {
rect = new GRect(width, height); // 70x40GRect

...
}

70 40

Parameters: drawBlueRect

33

Parameter names donot
affect program behavior.

34

Parameters: drawBlueRect

metersToCm(double meters) {private double
...

}

When this method finishes,
it will return a double.

Return

35

private double metersToCm(double
centimeters = meters

meters) {
* 100;double

return centimeters;
}

Returns the value of this
expression (centimeters).

Return

36

public void run() {
double cm = metersToCm(10);
...

}

37

Return

Setting a variable equal to a method
means we save the method’s return

value in that variable.

public void run() {
double cm = metersToCm(10);
...

}

Return

38

run() {
meters

private double metersToCm(double meters) {
double
return

centimeters = meters * 100;
centimeters;

}
39

= readDouble("# meters? ”);
public void

double
...

double cm = metersToCm(meters);
println(cm + " centimeters.");

}

Return

run() {
meters

private double metersToCm(double meters) {
double
return

centimeters = meters * 100;
centimeters;

}
40

meters? ”);
public void

double
...

double cm = metersToCm(meters);
println(cm + " centimeters.");

}

7
= readDouble("#

Return

run() {
meters

private double metersToCm(double meters) {
double
return

centimeters = meters * 100;
centimeters;

}
41

meters? ”);
public void

double
...

double cm = metersToCm(meters);
println(cm + " centimeters.");

}

7
= readDouble("#

7

Return

run() {
meters

42

meters? ”);
public void

double
...

double cm = metersToCm(meters);
println(cm + " centimeters.");

}

private double metersToCm(double meters) {
centimeters = meters * 100;double

return
}

7
= readDouble("#

7

7

centimeters;

700

Return

run() {
meters =

43

public void
double
...

double cm = metersToCm(meters);
println(cm + " centimeters.");

}

7
readDouble("# meters? ”);

700

Return

public void

44

run() {
double meters = readDouble("# meters? ”);
println(metersToCm(meters) + " cm.");

}

private double metersToCm(double meters) {
...

}

Return

public void run() {
double meters = readDouble("# meters? ”);
println(metersToCm(meters)

45

+ " cm.");
}

private double metersToCm(double meters) {
...

}

You can use a method’s return
value directly in anexpression.

700

7

Return

run() {
meters

46

= readDouble("# meters? ”);
public void

double
...

// Does nothing!metersToCm(meters);
...

}

Return

public

47

void
double

run() {
meters = meters? ”);

...

// Does nothing!metersToCm(meters);
...

}

7
readDouble("#

700

Return

•local variables in caller distinct from callee
•parameters just assigned names by the order in
which they’re passed

•tricky spots
•precedence / variable names
•what’s in scope??

•draw pictures and label variable values!
48

Approaching Traces

Randomness

49

•int num = RandomGenerator.getInstance().nextInt(1, 5);

•Can be used to generate:
•Integers: nextInt(min, max)
•Doubles: nextDouble(min, max)
•Colors: nextColor()
•Booleans: nextBoolean()

50

RandomGenerator

Characters and Strings

51

•A char is a primitive type that represents a single
letter, digit, or symbol. Uses single quotes (‘’).

•Computers represent chars as numbers under the
hood (ASCII encoding scheme).

•A string is an immutable object that represents a
sequence of characters. Uses double quotes (“”).

52

Characters and Strings

char

53

uppercaseA = ‘A’;

type on the right matches// We need
// the type

to cast to a char so the
on the left (char arithmetic defaults to int)

char uppercaseB = (char)(uppercaseA + 1);

int lettersInAlphabet =
// equivalent: ‘z’
// A to Z and a to

‘Z’ – ‘A’ + 1;
– ‘a’ + 1
z are sequential numbers.

Characters

Characters

54

•Note: chars are primitives. This means we can’t call
methods on them!

•Instead we use the Character class and call
methods on it. We pass in the character of interest
as a parameter.

•These methods do not change the char! They
return a modified char.

55

Characters

char ch = ‘a’;
Character.toUpperCase(ch);
ch.toUpperCase();

56

// does nothing!
// won’t compile!

//ch = Character.toUpperCase(ch);

if (Character.isUpperCase(ch)) {
println(ch + “ is upper case!”);

}

Characters

•Note: strings are (immutable) objects.This means
we can call methods on them!

•We cannot change a string after creating it. We
can overwrite the entire variable with a new
string, but we cannot go in and modify an
existing string.

•Strings can be combined with ints, doubles, chars,
etc.

57

Strings

Substring: remember that first index is inclusive
while second is exclusive

58

Strings: Indexing

Strings Useful Methods

59

String s = “Hello, world!”;

s.charAt(index) Returns character at given
index

s.charAt(2); // ‘1’
s.charAt(7); // ‘w’

s.substring(start, end)
s.substring(start)

Returns part of string
between given indices

s.substring(1, 4); // “ell”
s.substring(7); // “world!”

s1 += s2
s1 = s1 + s2

Concatenates string s2 to
the end of string s1

s += “!!” // “Hello,
world!!”

Integer.parseInt(s) Converts string into
integer representation, if
valid

s = “42”;
Integer.parseInt(s); // 42

String str = “Hello world!”;
str.toUpperCase();
str = str.toUpperCase();

60

// no new needed
// does nothing!
//

for (int i = 0; i < str.length(); i++) {
println(str.charAt(i));

}
// prints each char on its own line

Strings

•Use precedence rules and keep track of the type
along the way. Evaluate 2 at a time.

61

println(’A’ +
// ‘A’ + 5 is

5 + “ella”);
int (70), int + “ella” is

println((char)(‘A’
// ‘A’ + 5 is char

+ 5) +
(‘F’),

“ella”);
char + “ella”

string

is string

Type Conversion

•Super helpful Strings pattern: given a string, iterate through
and build up a new string. (Since strings are immutable!)

62

String oldStr = ...
String newStr = “”;
for (int i = 0; i < oldStr.length(); i++) {

// build up newStr
}

Strings Practice

•Compare strings using str.equals(str2) NOT str1
== str2

•chars = single quote, strings = double quote
•to convert char -> string, concatenate with empty string
(‘a’ + “” => “a”)

•if a string has N characters, indices go from 0 to N-1
•strings are immutable

63

Strings: Don’t forget

Scanners and
File Processing

64

•Use your syntax reference sheet if unsure!

65

File Reading and Scanners

scanner.next() Returns next token (as separated
by a space)

scanner.nextLine()
scanner.nextInt()
scanner.nextDouble()

Returns next line, int, or
double

scanner.hasNext()
scanner.hasNextLine()
scanner.hasNextInt()

Returns true or false value
indicating whether the scanner
has any more of the given token
lined up

scanner.useDelimiter(String delimiter) Uses a different pattern than a
space to separate tokens

private void parse(String str) {
Scanner scanner = new Scanner(str);
while (scanner.hasNext()) {

String token = scanner.next();
println(token);

}
scanner.close();

}

66

String and Scanners Practice

try {
Scanner input = new Scanner(new

File(“res/data.txt”));
while (input.hasNextLine()) {

String line = input.nextLine();
println(line);

input.close();
} catch (IOException ex) {

println(“Error reading the file: “ + ex);
}

67

File Reading Practice

Graphics Programs

68

•Look at lecture slides for lists of different GObject
types and their methods

•Remember: the x and y of GRect, GOval, etc. is their
upper left corner, but the x and y of GLabel is its
leftmost baseline coordinate.

•Remember: a label’s height is gotten from getAscent.

69

Graphics

while

70

(CONDITION) {
updateGraphics();
pause(PAUSE_TIME);

}

Standard format for animationcode:

(see Event-Driven Programming for exampleprogram)

Animation

•Example: mouse events

public void run() {
// Java runs this when program launches

}

public void mouseClicked(MouseEvent e) {
// Java runs this when mouse clicked

}
71

Event Handlers

There are many different types of mouse events. Each
takes the form:

public void eventMethodName(MouseEvent e) {

…and contain, at least, the following information:

72

Event-Driven Programming

e.getX() the x-coordinate of mouse cursor in window

e.getY() the y-coordinate of mouse cursor in window

Memory

73

private type name; // declared outside of any method

• scope is throughout an entire file

• useful for data you need throughout the program, or
cannot be stored as parameters (e.g. event handling)

74

Instance Variables

75

Primitives vs. Objects
Primitives Objects

What do they store in their
variable box, directly? Actual value Location of the object

How do you compare them? == .equals()

How are they passed as
parameters? By copy (value) By reference (passes location

of original)

Does the original change
when it’s passed as a
parameter?

No Yes

How are they created?
Normal declaration With new

public void

76

GRect rect =
run() {

new GRect(0,0,50,50);
fillBlue(rect);
add(rect); // rect is blue!

}

private void fillBlue(GRect myRect) {
myRect.setFilled(true);
myRect.setColor(Color.BLUE);

}

Memory

public void run() {
int x = 2;
x = addTwo(x);

77

println(x); // x is still 2!
}
private int addTwo(int x) {

x += 2; // this modifies addTwo’s COPY!
return x;

}

Memory

•Only objects can be null
•Check if a variable is null:

if (mole == null) { …
• Why?

78

“null”

79

“null”

// may be a GObject, or null if nothing at (x, y)
GObject mole = getElementAt(x, y);
if (mole != null) {

int x = mole.getX(); // OK
} else {

int x = mole.getX(); // CRASH!
}

Parting Words + Tips

80

•Try to get to everyproblem

•Don’t rush to coding too quickly. Read all instructions.

•Look over the practicemidterms

•More practice:

•Section problems

•CodeStepByStep

•Review concepts from assignments

•Textbook
81

Tips

•Two kinds of questions: read and write

•Readingquestions (e.g. code trace)

•Write out everything clearly

•Payattention todetails

•Writing questions

•Pseudocode!

•Can you decompose to make it easier?

•Pay attention to edge cases
82

Tips

Questions?

Good Luck! :-)

83

Extra Slides

84

Challenge: find outputof
this beforeproceeding!

Program Trace

(Dug up from an old program – do not
write code like this at home!:))

85

public void run()

86

String str =
{
“Boo!! It is halloween.”;

6));println(trickOrTreat(str,
...

}

Program Trace

run

str

Boo!! It is
Halloween.

private String num1) {
num1 *=
return str.substring(num1, str.length() – 1);

}

2; // 12

12
21

Program Trace
trickOrTreat

str

trickOrTreat(String str, int

num1

Boo!! It is
Halloween. 6 12

87

public void run()

88

String str =
{
“Boo!! It is halloween.”;

6));println(trickOrTreat(str,
...

}

halloween

(Console)

Program Trace

run

str

Boo!! It is
Halloween.

public void run() {
...
int candy = 5;
int costume = 6;
candy = howMuchCandy(candy, costume);

“ candy(ies)”);
}

5 6

Program Trace

println(“I got “ + candy +

run

89

str candy costume

Boo!! It is
Halloween. 5 6

private costume, int candy) {
candy / 2;int num3 = costume +

return num3 % 3;
}

Program Trace

howMuchCandy

90

costume candy

int howMuchCandy(int

65

private costume,
int num3 = costume +
return num3 % 3;

}

candy / 2;
// 2

Program Trace

howMuchCandy

91

costume candy num3

int howMuchCandy(int

65

int candy) {
// 8

8

public void run() {
...
int candy = 5;
int costume = 6;
candy = howMuchCandy(candy, costume);
println(“I got “ + candy + “ candy(ies)”);

}

halloween
I got 2candy(ies)

(Console)

Program Trace
run

92

str candy costume

Boo!! It is
Halloween. 2 6

Mail Karel

93

Karel is in a world with walkways to houses that have
mail to pick up. Karel should go to every house inorder,
go up the walkway and take all the mail (beepers).
House walkways can be any distance apart, and have
guide walls on the left and right up to the mailbox.

Challenge: solve thisbefore
proceeding to solution!

94

Mail Karel

Mail Karel

Loop:
- if there’s a

house: pick

up mail

- if front is
clear:

move

Pick up mail:

- traverse walkway

- take mail

- traverse walkway

95

public void
while

96

run() {
(frontIsClear()) {
if (leftIsClear()) {

pickUpMail();
}
if (frontIsClear()) {

move();
}

// maybe house on the last square!
}
if (leftIsClear()) {

pickUpMail();
}

}

Mail Karel

private void pickUpMail() {
turnLeft();
traverseWalkway();
takeMail();
turnAround();
traverseWalkway();
turnLeft();

}

97

Mail Karel

traverseWalkway() {

98

private void
move();
while (leftIsBlocked() && rightIsBlocked()) {

move();
}

}

Mail Karel

private void

99

takeMail() {
while (beepersPresent()) {

pickBeeper();
}

}

Mail Karel

