
 1

Colin Kincaid Practice Midterm
CS 106A July 16, 2018

CS 106A Practice Midterm Exam

Midterm Time: Monday, July 23rd, 7:00PM–9:00PM

Midterm Location: Hewlett 200

Based on handouts by Nick Troccoli

This handout is intended to give you practice solving problems that are comparable in format and
difficulty to those which will appear on the midterm examination. We do not guarantee that the
number of questions in this sample exam will match the number on the real exam, nor that every
kind of problem shown here will exactly match the kinds of problems shown on the final exam
(though the real exam will be generally similar overall).

This practice exam is intentionally more difficult than the real exam will be – think of this as an
upper ceiling of difficulty for the midterm exam.

The midterm exam is on your computer but closed-textbook and closed-notes. A “syntax
reference sheet” will be provided during the exam (it is omitted here, but available on the course
website). It will cover all material presented up to the midterm date itself. Please see the course
website for a complete list of midterm exam details and logistics.

General instructions
Answer each of the questions included in the exam. If a problem asks you to write a method, you
should write only that method, not a complete program. Type all of your answers directly on the
answer page provided for that specific problem, including any work that you wish to be considered
for partial credit.

Each question is marked with the number of points assigned to that problem. The total number of
points is 120. We intend for the number of points to be roughly comparable to the number of
minutes you should spend on that problem.

Unless otherwise indicated as part of the instructions for a specific problem, your code will not be
graded on style – only on functionality. On the other hand, good style (comments, etc.) may help
you to get partial credit if they help us determine what you were trying to do.

 2

Problem 1: Karel the Farmer [20 points]
Karel has recently started a new job as a farmer, and needs you to write a program called
FarmerKarel to help it gather up crops (represented as beepers, of course). Karel starts off in
a world of any size, with crops (beepers) scattered around this world. Your program should have
Karel, for each row in this world, gather up the beepers in that row and place them on the leftmost
square of that row. Here is a before-and-after example:

 before: after:

Note that, in each row, Karel has gathered all beepers in that row and placed them on the leftmost
square. If there are no beepers in a row, Karel should not place any beepers in that row.

You may assume the following facts about the world:

• Karel starts at (1, 1) facing East, with an infinite number of beepers in its beeper bag.
This means Karel cannot put down exactly the number of beepers it previously collected.

• The world may be any size, and your program should work for all world sizes.
• There may be any number of beepers, or no beepers, on a given square, and beepers may

be placed anywhere in the world.
• There are no walls in the world.
• Karel’s ending location and direction do not matter.

Note that you are limited to the Java instructions shown in the Karel reader. For example,
the only variables allowed are loop control variables used within the control section of the for
loop. You are not allowed to use syntax like local variables, instance variables, parameters, return
values, Strings, return or break, etc.

 3

Problem 2: Java Statements and Expressions [20 points]

(a) For each expression in the left-hand column, indicate its value. Be sure to list a constant
of the appropriate type (e.g. 7.0 rather than 7 for a double, Strings in double quotes,
chars in single quotes, true/false for a boolean, etc.).

i. 1 + (2 + “B”) + ‘A’

ii. 11 / 2 > 5 || 5 % 2 == 1

iii. (char)(‘B’ + 2) + “” + 4 + 27 / 3

iv. 21 / 2.0 + 3 % 4 – 23 / 2

v. !(3 / 2 < 1.5) && (4 > 5 || 2 % 3 == 0)

(b) What are the color, dimensions and location of rect on the canvas?
 public class Problem2b extends GraphicsProgram {

 public void run() {
 int num2 = 13;
 int num1 = 9;
 int width = mystery1(num2, num1);
 int height = mystery1(5, num2*3);
 GRect rect = new GRect(0, 0, width*3, height);
 rect.setFilled(true);
 rect.setColor(Color.BLUE);
 mystery2(rect, num1);
 add(rect);
 }

 private int mystery1(int num1, int num2) {
 num2 += 3;
 String str = "Hello " + num1;
 int num3 = num2 - str.length();
 return num3;
 }

 private void mystery2(GRect otherRect, int num2) {
 otherRect.setLocation(num2, num2);
 otherRect.setColor(Color.RED);
 }
}

 4

Problem 3: Movie Kiosk [25 points]
A local movie theater has hired you to write a
ConsoleProgram for their ticket purchase
kiosks called MovieKiosk that continually
prompts the user for movie name, # tickets and
price per ticket, and when they are done outputs
the names of all movies they want to see, as well
as the total cost (see input at right).
The program should stop prompting the user once
they submit ENTER for the movie name. You
can assume that if they enter a movie name, they
will always enter a valid ticket quantity and price.
At the end, you should print out all entered movie
names, as well as the total price of all purchased
tickets. You do not have to worry about the
number of digits displayed for any numbers. If no
movies are entered, you should print out “Movies: None” and not print out the total price.

For movie names, print “Movies: ” followed by all movie names joined with “ and ”. For
instance, if the user enters “Cars”, “WALL-E” and “Up”, you should print out “Movies:
Cars and WALL-E and Up”. If they enter “Cars” you should print “Movies: Cars”.
 dfdfdfdfdfd
The movie theater would also like you to award
randomly-chosen customers vouchers (credits)
towards their next movie to encourage future
purchases. Specifically, every time the user
selects tickets for a movie (after entering the price
per ticket for a movie), there is a 10% chance this
user gets a voucher towards their next entered
movie (if there is one). The voucher should be for
a random integer dollar amount between $5-25.
On their next purchase, if the voucher amount is
less than the total for that movie, simply deduct
the voucher amount from that total. If the voucher
amount is greater than or equal to the total for that
movie, then they get those tickets for free, and the
remainder disappears. For instance, at right, the
user receives a $10 voucher for WALL-E after
purchasing Cars tickets; they only spend $7 on
WALL-E tickets, so they get those tickets for free and the remaining $3 disappears; it does not
carry over to their Up ticket purchase. If, in this example, the user instead spent $14 on WALL-E
tickets, then after the voucher is applied only $4 would be added to their total.
Hint: the RandomGenerator method nextBoolean takes a double parameter which is the percent
chance of returning true.

Movie name: Cars
tickets: 2
Ticket price: 14.50

Movie name: WALL-E
tickets: 4
Ticket price: 14.00

Movie name: Up
tickets: 3
Ticket price: 10.50

Movie name: [ENTER]

Movies: Cars and WALL-E and Up
Total: $116.5

Movie name: Cars
tickets: 2
Ticket price: 14.50
You have won a $10 voucher for
your next purchase!

Movie name: WALL-E
tickets: 2
Ticket price: 3.50

Movie name: Up
tickets: 2
Ticket price: 10

Movie name: [ENTER]

Movies: Cars and WALL-E and Up
Total: $49.0

 5

Problem 4: StickHero [20 points]
Your friends are working on a new video game and, knowing that you are in CS 106A, have
enlisted your programming help for the main character, StickHero, who has the superpower to
switch between “double size” and “original size”. If the user clicks on StickHero when it is original
size, it will go to double size, and vice versa. The player image, player.png, has been provided
by your teammates in the res folder; original size is defined to be the size of this image, and
double size is defined to be double the dimensions of this image.

Write a GraphicsProgram called StickHero that starts with original-size StickHero at x = 0,
centered vertically. When the program starts, StickHero should start animating to the right 5 pixels
each iteration, with a delay of 30ms.
 initial state after a few seconds

As soon as any part of StickHero goes off the right edge of the screen, it should go back to its
starting position at the left side of the screen and continue animating to the right. If, at any point,
the user clicks on StickHero, it should toggle between double size and original size. Notably,
however, the x/y center point of StickHero should never change.

 original size double size

As shown above, if you mark StickHero’s center (note: these lines do not actually appear
onscreen), it remains unchanged as you toggle between original and double size.

Your program should work for any screen size and any reasonable size of player.png (e.g. that
fits onscreen). You do not need to account for the screen resizing after the program launches.

 6

Problem 5: Mentions [35 points]
After finishing up their StickHero video game, your friends have now moved on to working on a
new social network. They need you to help them implement mentions, as described below. Note
that this is a two-part problem where you will implement a single method and a ConsoleProgram.

(a) Write a method replaceMention that accepts a string as a parameter and, if it is a
mention, returns a new string that is the mention’s expanded name. A mention is defined
as an ‘@’ symbol followed by 1 or more upper-camel-cased names; upper-camel-case
means the first letter is uppercase and all other letters are lowercase. For instance,
@NickTroccoli, @Nolan and @AleksanderPaulDash are all valid mentions, But
@ and @nicktroccoli are not valid mentions.
The expanded name of a mention is all the upper-camel-case names in the mention with a
space in between them, except for the last name in the mention, which should be
abbreviated with only its first initial and a period. However, if the mention contains only
1 name, the expanded name is just that name (without the ‘@’). The following table shows
some sample inputs and outputs to the replaceMention method.

Call Value Returned
replaceMention(“@NickTroccoli”) “Nick T.”

replaceMention(“@AleksanderPaulDash”) “Aleksander Paul D.”

replaceMention(“@Nolan”) “Nolan”

replaceMention(“hello!”) “hello!”

The input is guaranteed to be a single token without any spaces, and is guaranteed to be
entirely a mention, or not contain a mention at all. Note that if the input is not a mention
(including the empty string), the output is simply the same as the input.

(b) Write a ConsoleProgram called ReplaceMentions that prompts the user for a valid text
filename in the res folder, and prints out that file to the console with all of the mentions
replaced with their expanded names. You should reprompt the user until they enter a valid
filename. If an error occurs reading the file, print out an error message. You may assume
that the text file specified has only 1 line of text, and that each word in the file is separated
by a single space. For example, if the file myinput.txt contains the following text:

Head TA @RishiPaulBedi - friends with @Nick - rocks socks!

Then the output of the ReplaceMentions program would look like the following (user
input bolded and underlined):

Filename: myinput.txt
Head TA Rishi Paul B. - friends with Nick - rocks socks!

