
Mehran Sahami Handout #31
CS 106A October 29, 2018

Section Handout #5: Files, ArrayLists, and Classes
Portions of this handout by Eric Roberts

1. Word Count
Write a program WordCount that reads a file and reports how many lines, words, and
characters appear in it. Suppose, for example, that the file lear.txt contains the
following passage from Shakespeare’s King Lear:

Poor naked wretches, wheresoe'er you are,
That bide the pelting of this pitiless storm,
How shall your houseless heads and unfed sides,
Your loop'd and window'd raggedness, defend you
From seasons such as these? O, I have ta'en
Too little care of this!

Given this file, your program should be able to generate the following sample run:

For the purposes of this program, a word consists of a consecutive sequence of letters
and/or digits, which you can test using the static method Character.isLetterOrDigit.
Also, you should not count the characters that mark the end of a line, which will have
different values depending on the type of computer.

2. How Unique!
Write a program that asks the user for a list of names (one per line) until the user enters a
blank line (i.e., just hits return when asked for a name). At that point the program should
print out the list of names entered, where each name is listed only once (i.e., uniquely) no
matter how many times the user entered the name in the program. You may find that
using an ArrayList to keep track of the names entered by user may greatly simplify this
problem.

A sample run of this program is shown below.

3. A Christmas Carol
Using the Student class from Chapter 6 as an example, write a class definition for a class
called Employee, which keeps track of the following information:

• The name of the employee
• The employee’s nine-digit tax id number
• The employee’s job title
• A flag indicating whether the employee is still active
• The employee’s annual salary

The first two fields should be set as part of the constructor, and it should not be possible
for the client to change these values after that. For the other fields, your class definition
should provide getters and setters that manipulate those fields. Once you have made this
definition, write the code necessary to initialize the following Employee objects:

ceo

Ebenezer Scrooge
161803399

CEO
active
£1000

partner
Jacob Marley
271828182

Former Partner
inactive

£0

clerk
Bob Cratchit
314159265

Clerk
active
£25

What would you need to do to double Bob Cratchit’s salary?

4. Histograms

Write a program that reads a list of exam scores from the file
MidtermScores.txt (which contains one score per line) and
then displays a histogram of those numbers, divided into the
ranges 0–9, 10–19, 20–29, and so forth, up to the range
containing only the value 100. If, for example,
MidtermScores.txt contains the data shown in the right
margin, your program should then be able to generate a
histogram that looks as much as possible like the following
sample run:

MidtermScores.txt
73
58
73
93
82
62
80
53
93
52
92
75
65
95
23
100
75
38
80
77
92
60
98
95
62
87
97
73
78
72
55
58
42
31
78
70
78
74
70
60
72
75
84
87
62
17
92
78
74
65
90

5. Happy Halloween
For the program below, trace through its execution by hand to show what output is
produced when it runs.

/*
 * File: Halloween.java
 * -------------------
 * This program is just testing your understanding of parameter
 * passing.
 */
import acm.program.*;

public class Halloween extends ConsoleProgram {

 public void run() {
 int halloweenTown = 10;
 Skeleton bones = new Skeleton("bones");
 Pumpkin king = new Pumpkin(halloweenTown, bones);
 Skeleton skellington = bones;
 skellington.setName("skellington");
 halloweenTown = 5;
 println(king.toString());
 }
}

public class Pumpkin {

 private int x;
 private Skeleton y;

 public Pumpkin(int z, Skeleton w) {
 x = z;
 y = w;
 }

 public String toString() {
 return (y.getName() + " " + x);
 }
}

public class Skeleton {

 private String name;

 public Skeleton(String n) {
 name = n;
 }

 public String getName() {
 return name;
 }

 public void setName(String newName) {
 name = newName;
 }
}

