
Mehran Sahami Handout #40
CS 106A November 14, 2018

Assignment #6—NameSurfer
Due: 1:30pm on Wednesday, November 28th

This assignment may be done in pairs
Your Early Assignment Help (YEAH) hours: Thurs., Nov. 15th, 7:00pm-8:30pm in 370-370

 (which is optional, not required)

The NameSurfer assignment was created by Nick Parlante and revised by Patrick Young and Eric Roberts.
The Data Visualization guided extension created by Brahm Capoor.

This assignment has two primary goals. The first is to give you an opportunity to use
Java interactors to create an application that looks more like a modern interactive
program complete with buttons, text fields, and a resizable graphical display. The second
goal is to pull together the various facilities you have learned about so far to create an
interesting application that—unlike Breakout, Hangman, and Yahtzee—is not a game but
rather a useful program that presents data on some fascinating sociological questions.

Overview of the NameSurfer project
Against all bureaucratic stereotypes, the Social Security Administration, provides a neat
web site showing the distribution of names chosen for children over the last 100 years in
the United States (http://www.ssa.gov/OACT/babynames/). The Social Security
Administration provides data that shows the 1000 most popular boy and girl names for
children at 10 year intervals. The data can be boiled down to a single text file that looks
something like this:

NamesData.txt
. . .

Sam 58 69 99 131 168 236 278 380 467 408 466
Samantha 0 0 0 0 0 0 272 107 26 5 7
Samara 0 0 0 0 0 0 0 0 0 0 886
Samir 0 0 0 0 0 0 0 0 920 0 798
Sammie 537 545 351 325 333 396 565 772 930 0 0
Sammy 0 887 544 299 202 262 321 395 575 639 755
Samson 0 0 0 0 0 0 0 0 0 0 915
Samuel 31 41 46 60 61 71 83 61 52 35 28
Sandi 0 0 0 0 704 864 621 695 0 0 0
Sandra 0 942 606 50 6 12 11 39 94 168 257
. . .

Each line of the file begins with the name, followed by the rank of that name in each of
the 11 decades since 1900, counting the current one: 1900, 1910, 1920, and so on up to
2000. A rank of 1 indicates the most popular name that year, while a rank of 997
indicates a name that is not very popular. A 0 entry means the name did not appear in the
top 1000 names for that year and therefore indicates a name that is even less popular. The
elements on each line are separated from each other by a single space. The lines happen
to be in alphabetical order, but nothing in the assignment depends on that fact.

As you can see from the small excerpt from the file, the name Sam was #58 in the first
decade of the 1900s and is slowly moving down. Samantha popped on the scene in the
1960s (possibly because the show Bewitched, which had a main character names
Samantha ran on television during those years) and is moving up strong to #7. Samir
barely appears in the 1980s (at rank #920), but by the current decade is up to #798. The
database counts children born in the United States, so trends in particular names tend to
reflect the evolution of ethnic communities over the years.

 – 2 –

Figure 1. Sample run of the NameSurfer program (with names "Sam" and "Samantha")

The goal of this assignment is to create a program that graphs these names over time, as
shown in the sample run in Figure 1. In this diagram, the user has just typed Samantha
into the box marked “Name” and then clicked on the “Graph” button, having earlier done
exactly the same thing for the name Sam. Whenever the user enters a name, the
NameSurfer program creates a new plot line showing how that name has fared over the
decades. Clicking on the “Clear” button removes all the plot lines from the graph so that
the user can enter more names without all the old names cluttering up the display. Note
that the program is not case sensitive

 to the names that the user types into the "Name"
textbox. So, the user could enter "Samantha", "SAMANTHA", "samantha" or even
"sAmAnThA" and the program would display the graph for the name "Samantha". If the
user enters a name which is not in the NamesData.txt file, the program display does not
add a new plot line (since there is no data for that name), but existing lines should remain.

To give you more experience working with classes that interact with one another, the
NameSurfer application as a whole is broken down into several class files, as follows:

• NameSurfer—This is the main program class that ties together the application. It has
the responsibility for creating the other objects and for responding to the buttons at the
bottom of the window, but only to the point of redirecting those events to the objects
represented by the other classes.

• NameSurferConstants—This interface is provided for you and defines a set of
constants that you can use in the rest of the program simply by having your classes
implement the NameSurferConstants interface, as they do in the starter files. The
NameSurferConstants interface therefore has the same role that YahtzeeConstants
did in Assignment #5.

 – 3 –

• NameSurferEntry—This class ties together all the information for a particular name.
Given a NameSurferEntry object, you can find out what name it corresponds to and
what its popularity rank was in each decade.

• NameSurferDataBase—This class keeps track of all the information stored in the data
files, but is completely separate from the user interface. It is responsible for reading in
the data and for locating the data associated with a particular name.

• NameSurferGraph—This class is a subclass of GCanvas that displays the graph of the
various names by arranging the appropriate GLine and GLabel objects on the screen,
just as with the various graphical programs you’ve written this quarter.

Even though the class structure sounds complicated, the NameSurfer application code is
about the same size as Yahtzee. Even if the scale of the project is comparable to the last
assignment, the wise course is to start on the assignment soon and keep up with the
milestones described in this handout.

Milestone 1: Assemble the GUI interactors
If you look at the bottom of Figure 1, you will see that the region along the NORTH edge of
the window contains several interactors: a JLabel, a JTextField, and two JButtons.
Since putting up interactors is something you haven't done in previous assignments, you
probably want to work on this step first. Your first milestone is simply to add the
interactors to the window and create an implementation for the actionPerformed
method that allows you to check whether you can detect button clicks and read what’s in
the text field. Note that pressing the ENTER key in the text field should operate the same
as clicking the Graph button.

The simplest strategy to check whether your program is working is to change the
definition of the NameSurfer class so that it extends ConsoleProgram instead of
Program, at least for the moment. You can always change it back later. Once you have
made that change, you can then use the console to record what’s happening in terms of
the interactors to make sure that you’ve got them right. For example, Figure 2 shows a
possible transcript of the commands used to generate the output from Figure 1, in which
the user has just completed the following actions:

1. Entered the name Sam in the text field and clicked the Graph button.
2. Entered the name Samantha in the text field and then typed the ENTER key.
3. Clicked the Clear button.

The hard part about reaching this milestone is understanding how interactors work. Once
you do, writing the code is quite straightforward – it's only 10 to 15 lines of code.

Figure 2. Illustration of Milestone 1

 – 4 –

Milestone 2: Implement the NameSurferEntry class
The starter file for the NameSurferEntry class appears in full as Figure 3 on the
following page. As with the other files supplied with this assignment, the starter file
includes definitions for all of the public methods we expect you to define. The method
definitions in the starter files, however, do nothing useful, although they occasionally
include a return statement that gives back a default value of the required type. In
Figure 3, for example, the getRank method always returns 0 to satisfy the requirement
that the method returns an int as defined in its header line.

Methods that will eventually become part of the program structure but that are
temporarily unimplemented are called stubs. Stubs play a very important role in program
development because they allow you to set out the structure of a program even before you
write most of the code. As you implement the program, you can go through the code and
replace stubs with real code as you need it.

The NameSurferEntry class encapsulates the information pertaining to one name in the
database. That information consists of two parts:

1. The name itself, such as "Sam" or "Samantha"
2. A list of 11 values indicating the rank of that name in each of the decades from 1900

to 2000, inclusive

The class definition begins with a constructor that creates an entry from the line of data
that appears in the NamesData.txt file. For example, the entry for Sam looks like this:

Sam 58 69 99 131 168 236 278 380 467 408 466

The idea behind the design of this constructor is that it should be possible to read a line of
data from the file and then create a new entry for it using code that looks like this:

String line = rd.readLine();
NameSurferEntry entry = new NameSurferEntry(line);

The implementation of the constructor has to divide up the line at the spaces, convert the
digit strings to integers (using Integer.parseInt), and then store all of this information
as the private state of the object in such a way that it is easy for the getName and getRank
methods to return the appropriate values.

The last method in the starter implementation of NameSurferEntry is a toString
method whose role is to return a human-readable representation of the data stored in the
entry. For example, if the variable entry contains the NameSurferEntry data for Sam,
you might want entry.toString() to return a string like this:

"Sam [58 69 99 131 168 236 278 380 467 408 466]"

Defining toString for a class has the wonderful advantage that it makes it possible to
print out objects of that class using println, just as you do for primitive values.
Whenever Java needs to convert an object to a string, it always calls its toString method
to do the job. The default definition of toString in the Object class doesn’t supply
much useful information, and you will find that your debugging sessions get much easier
if you can look easily at the values of your objects.

 – 5 –

To show that you’ve got NameSurferEntry implemented correctly, you might want to
write a very simple test program that creates an entry from a specific string and then
verifies that the other methods work as they are supposed to.

Figure 3. Starter file for the NameSurferEntry class
/*
 * File: NameSurferEntry.java
 * --------------------------
 * This class represents a single entry in the database. Each
 * NameSurferEntry contains a name and a list giving the popularity
 * of that name for each decade stretching back to 1900.
 */

import acm.util.*;
import java.util.*;

public class NameSurferEntry implements NameSurferConstants {

/**
 * Creates a new NameSurferEntry from a data line as it appears
 * in the data file. Each line begins with the name, which is
 * followed by integers giving the rank of that name for each
 * decade.
 */
 public NameSurferEntry(String line) {
 // You fill this in //
 }

/**
 * Returns the name associated with this entry.
 */
 public String getName() {
 // You need to turn this stub into a real implementation //
 return null;
 }

/**
 * Returns the rank associated with an entry for a particular
 * decade. The decade value is an integer indicating how many
 * decades have passed since the first year in the database,
 * which is given by the constant START_DECADE. If a name does
 * not appear in a decade, the rank value is 0.
 */
 public int getRank(int decade) {
 // You need to turn this stub into a real implementation //
 return 0;
 }

/**
 * Returns a string that makes it easy to see the value of a
 * NameSurferEntry.
 */
 public String toString() {
 // You need to turn this stub into a real implementation //
 return "";
 }
}

 – 6 –

Milestone 3: Implement the NameSurferDataBase class
The next step in the process is to implement the NameSurferDataBase class, which
contains two public entries:

• A constructor that takes the name of a data file and uses that to read in the entire set of

data from the file into internal data structures that allow the class to keep track of all
the records as a database.

• A findEntry method that takes a name, looks it up in the stored database (note that
your program should not

 be case sensitive regarding the name), and returns the
NameSurferEntry for that name, or null if that name does not appear.

The code for this part of the assignment is not particularly difficult. The challenging part
lies in figuring out how you want to represent the data so that you can implement the
findEntry method as simply and as efficiently as possible.

To test this part of the program, you can add a line of code or two to the NameSurfer
program so that it creates the NameSurferDataBase and then change the code for the
button handlers so that clicking the “Graph” button looks up the current name in the data
base and then displays the corresponding entry (using its toString method), as shown in
Figure 4 below.

Figure 4. Illustration of Milestone 3

Milestone 4: Create the background grid for the NameSurferGraph class
The next step in the process is to begin the implementation of the NameSurferGraph
class, which is responsible for displaying the graph in the window by building the
underlying model. The starter code for the NameSurferGraph class appears in Figure 5
on the next page.

 – 7 –

Figure 5. Starter file for the NameSurferGraph class
/*
 * File: NameSurferGraph.java
 * --------------------------
 * This class is responsible for updating the graph whenever the
 * list of entries changes or the window is resized.
 */

import acm.graphics.*;
import java.awt.event.*;

public class NameSurferGraph extends GCanvas
 implements NameSurferConstants, ComponentListener {

/**
 * Creates a new NameSurferGraph object that displays the data.
 */
 public NameSurferGraph() {
 addComponentListener(this);
 // You fill in the rest //
 }

/**
 * Clears the list of name surfer entries stored inside this class.
 */
 public void clear() {
 // You fill this in //
 }

/**
 * Adds a new NameSurferEntry to the list of entries on the display.
 * Note that this method does not actually draw the graph, but
 * simply stores the entry; the graph is drawn by calling update.
 */
 public void addEntry(NameSurferEntry entry) {
 // You fill this in //
 }

/**
 * Updates the display image by deleting all the graphical objects
 * from the canvas and then reassembling the display according to
 * the list of entries. Your application must call update after
 * calling either clear or addEntry; update is also called whenever
 * the size of the canvas changes.
 */
 public void update() {
 // You fill this in //
 }

/* Implementation of the ComponentListener interface */
 public void componentHidden(ComponentEvent e) { }
 public void componentMoved(ComponentEvent e) { }
 public void componentResized(ComponentEvent e) { update(); }
 public void componentShown(ComponentEvent e) { }

}

 – 8 –

There are a couple of important items in the NameSurferGraph starter file that are worth
noting:

1. This class extends GCanvas, which means that every NameSurferGraph object is not

only a GCanvas but also an instance of all the superclasses of the GCanvas class.
GCanvas is a subclass of Component in the standard java.awt package and therefore
is part of the hierarchy of classes that can be added to the display area of a program.
Moreover, it means we can call any of the GCanvas methods, such as adding or
removing GObjects, from within NameSurferGraph.

2. The starter file includes a tiny bit of code that monitors the size of the window and
calls update whenever the size changes. This code requires only a couple of lines to
implement, but would be hard to explain well enough for you to implement on your
own. Writing a page of description so that you could add a couple of lines seemed
like overkill, particularly given that the strategy is easiest to learn by example.

To start the process of adding the graphing code, go back to the NameSurfer class and
change its definition so that it extends Program rather than the temporary expedient of
extending ConsoleProgram (if you were using that for debugging). At the same time,
you should remove the various println calls that allowed you to trace the operation of
the interactors in the earlier milestones.

Now, you'll need to declare a NameSurferGraph private instance variable in your main
NameSurfer class:

private NameSurferGraph graph;

You should then change the constructor of the NameSurfer class so that it creates a new
NameSurferGraph object and adds that object to the display, as follows:

graph = new NameSurferGraph();
add(graph);

If you run the program with only these changes, it won’t actually display anything on the
screen. To create the graph, you need to implement the update method, which will
almost certainly involve defining private helper methods as well. As a first step, write the
code to create the background grid for the graph, which consists of the vertical line
separating each decade, the horizontal lines that provide space for the top and bottom
borders (which are there to ensure that the text labels stay within the window bounds),
and the labels for the decades. As with all the graphical applications you’ve written, the
lines and labels are represented using GLine and GLabel objects, which you add to the
graph in the appropriate positions.

 – 9 –

Milestone 5: Complete the implementation of NameSurferGraph class
In addition to creating the background grid, the update method in NameSurferGraph also
has to plot the actual data values. As you can see from Figure 5, the NameSurferGraph
class includes two methods for specifying what entries are displayed on the screen. The
addEntry method adds a new NameSurferEntry to a list of values that are currently on
the display. The clear method deletes all of the entries in that list so as to clear the
graph.

It is important to note that neither addEntry or clear actually changes the display. To
make changes in the display, you need to call update, which deletes any existing
GObjects from the canvas and then assembles everything back up again

. At first glance,
this strategy might seem unnecessary. It would, of course, be possible to have addEntry
just add all of the GLines and GLabels necessary to draw the graph.

The problem with that approach is that it would no longer be possible to reconstruct the
entire graph. In this example, you need to do just that to create a new graph whenever
you change the size of the display. By storing all of the entries in an internal list, the
NameSurferGraph class can redraw everything when update is invoked from the
componentResized method. We provide you an executable demo program, named
NameSurferDemo, in the starter project so you can see how the program should work
when it is completed.

There are a couple of points that you should keep in mind while implementing this part of
the program:

• To make the data easier to read, the lines on the graph are shown in different colors.

As you can see by running (double-clicking on) the demo program (NameSurferDemo)
provide in the starter project, the first data entry is plotted in black, the second in red,
the third in blue, and the fourth in magenta. After that, the colors cycle around again
through the same sequence.

• The fact that rank 1 is at the top of the window and rank 1000 is at the bottom means
that it can sometimes seem confusing that rank 0—which means that the name does
not appear in the top 1000 values for that year—appears at the bottom. To reduce the
apparent discontinuity between rank 1 and rank 0, the entries for names that are absent
from the data for a decade are listed with an asterisk

 instead of a numeric rank. You
can see several examples of this convention in the data for Samantha in Figure 1.

Guided Extension: Data Visualization
As this assignment shows, a powerful thing that you can use a computer to do is to
produce visualizations that allow us to glean insights from large amounts of data. Having
completed NameSurfer, you might now wish to do an extension by applying your
programming skills to a problem of your own choosing. To help you do so, the
assignment comes with a guided extension to visualize a dataset of your own choosing
(although we provide some sample datasets to work with). To learn more about this
extension, consult the Data Visualization Extension handout, which will be posted on the
course website.

 – 10 –

Other Possible Namesurfer Extensions
If you choose instead to focus on augmenting your NameSurfer submission, there are a lot
of things that you could do to make this program more interesting. Here are just a few
possibilities:

• Add features to the display. The current display contains only lines and labels, but

could easily be extended to make it more readable. You could, for example, put a dot
at each of the data points on the graph. Even better, however, would be to choose
different symbols for each line so that the data would be easily distinguishable even in
a black-and-white copy. For example, you could use little circles for the first entry,
squares for the second, triangles for the third, diamonds for the fourth, and so on. You
might also figure out what the top rank for a name is over the years and set the label for
that data point in boldface.

• Allow deletion as well as addition. Because the screen quickly becomes cluttered as
you graph lots of names, it would be convenient if there were some way to delete
entries individually, as opposed to clearing the entire display and then adding back the
ones you wanted. The obvious strategy would be to add a “Delete” button that
eliminated the entry corresponding to the value in the “Name” box. That approach,
however, has a minor drawback given the design so far. If you added a bunch of
entries to the graph and then deleted the early ones, the colors of the later entries would
shift, which might prove disconcerting. Can you redesign the color-selection strategy
so that displayed entries retain their color even if other entries are removed?

• Try to minimize the overprinting problem. If the popularity of a name is improving
slowly, the graph for that name will cross the label for that point making it harder to
read. You could reduce this problem by positioning the label more intelligently. If a
name were increasing in popularity, you could display the label below the point;
conversely, for names that are falling in popularity, you could place the label above the
point. An even more challenging task is to try to reduce the problem of having labels
for different names collide, as they do for Sam and Samantha in Figure 1.

• Adjust the font size as the application size changes. One of the wonderful features of
this program is that it redraws itself to fill the available space if you change the size of
the window. If you make it too small, however, the labels run together and become
unreadable. You could eliminate this problem by choosing a font size that allows each
label to fit in the space available.

• Rewrite the application to use the model/view/controller pattern. The NameSurfer
prorgam turns out to be an ideal application for the model/view/controller pattern
described in Chapter 14. If you finish the standard assignment, you might try to
reimplement it so that it maintains a separate model that can support multiple viewers.
If you made this change, you could, for example, add a “Table” button to the
application that would add a second viewer to the application, which would display the
results in tabular rather than graphical form.

