Arithmetic Expressions

e Operations on numerical types

e Operations:

+ ‘addition”

- “subtraction”

* “multiplication”

/ “division” (different for int vs. double)
% “remainder”

* Precedence (in order):

O highest
*/,%
+, — lowest

Operators in same precedence category evaluated left to right

Type Casting

e Treat one type as another for one operation

int x = 3;

double vy;

y = x 7/ 2; // y =1.0
y = (double)x 7/ 2; // y=1.5
y = 5.9;

x = (Int)y; // x =5

X

// fine: y = 7.0
// error

< X N

X <
I 1mn 1l

Int

X
[

X
[

X
[

X
[

X
[

X = 3;

X

X

X

Expression Short-hands

+ 1;

X++

Boolean Expressions

e Boolean expression Is just a test for a condition
o Essentially, evaluates to true or false

* Value comparisons:

“equals” (note: not single =)
“not equals” (cannot say <>)
“greater than”

“less than”

“greater than or equal to”
“less than or equal to”

More Boolean Expressions

* Boolean comparisons (in order of precedence):
! “not”
'p If p Is true, then Tp is false, and vice versa

&& “and”
p && Q only true If p and g are both true

1 “or”
P |l g true if p or g (or both) are true

boolean p = (x 1I=1) || (x = 2);

p is always true, you really want:

boolean p = (X 1= 1) && (x 1= 2);

Short Circult Evaluation

« Stop evaluating boolean expression as soon as we know the answer

e Consider:
p=0G>3) |l (4 <=2);

The test(4 <= 2)is not performed!

o Example of useful case:
p=&I!1=0) & ((y 7 x) == 0);

Avoid division by 0, since ((y /7 x) == 0) is not performed

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6

