
Arithmetic Expressions
• Operations on numerical types

• Operations:
+ “addition”
- “subtraction”
* “multiplication”
/ “division” (different for int vs. double)
% “remainder”

• Precedence (in order):
() highest
*, /, %
+, - lowest

Operators in same precedence category evaluated left to right

Type Casting
• Treat one type as another for one operation
int x = 3;
double y;

y = x / 2;

y = (double)x / 2;

y = 5.9;
x = (int)y;

x = 7;
y = x; // fine: y = 7.0
x = y; // error

// y = 1.0

// y = 1.5

// x = 5

Expression Short-hands
int x = 3;

x = x + 1; x += 1; x++;

x = x + 5; x += 5;

x = x – 1; x -= 1; x--;

x = x * 3; x *= 3;

x = x / 2; x /= 2;

Boolean Expressions
• Boolean expression is just a test for a condition

• Essentially, evaluates to true or false

• Value comparisons:
== “equals” (note: not single =)
!= “not equals” (cannot say <>)
> “greater than”
< “less than”
>= “greater than or equal to”
<= “less than or equal to”

More Boolean Expressions
• Boolean comparisons (in order of precedence):

! “not”
!p if p is true, then !p is false, and vice versa

&& “and”
p && q only true if p and q are both true

|| “or”
p || q true if p or q (or both) are true

boolean p = (x != 1) || (x != 2);

p is always true, you really want:

boolean p = (x != 1) && (x != 2);

Short Circuit Evaluation
• Stop evaluating boolean expression as soon as we know the answer

• Consider:
p = (5 > 3) || (4 <= 2);

The test(4 <= 2)is not performed!

• Example of useful case:
p = (x != 0) && ((y / x) == 0);

Avoid division by 0, since ((y / x) == 0) is not performed

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6

