Final Review Session

Brahm Capoor, Fall 2018

Logistics

December 10th, 8:30 - 11:30 AM

Last names A-L: Hewlett 200 (where we have lecture)

Last names M-Q: Hewlett 201 (next to where we have lecture)
Last names R-Z: Bishop Auditorium

Come a little early!

BlueBook

BlueBook Battery48% § Time romaining 1:59 ala

Karel the Robot (20 points)

proge Each location that i part
the border should have one beeper on it and the border should be inset by one square from the outer walls of
world

Initial World State Final World State 51|

Download for Mac here

Download for Windows her SRR B s

Handout here

Make sure to have it installed and set up

before the exam

http://cs106a.stanford.edu/software/BlueBook-1.1.0.dmg
http://cs106a.stanford.edu/software/BlueBookSetup1.1.0.exe
http://web.stanford.edu/class/cs106a/handouts/30a-Taking-An-Exam-On-BlueBook.pdf

Concepts Practice

The better you understand how
everything fits together, the
more able you’ll be to do new
problems!

Where to find practice problems

Section handouts
Practice Final + Additional Practice Problems

CodeStepByStep

Textbook

Scattered throughout these slides

https://codestepbystep.com/

Any logistical
questions?

Midterm Greatest Hits

Check out the midterm review for the full collection
Skip to the next section of these slides

http://web.stanford.edu/class/cs106a/lectures/MidtermReview.pdf

Primitive variables

X = 7; // declare and initialize a variable
X = 9; // change the value of x
X =X + 1; // increment (add 1 to) x. A.K.A. x++
X =X + 2; // add 2 to x. A.K.A. X += 2
X /= 2; // divide x by 2, and truncate result

d = 3.5;

isThisTrue = true;
isThisTrue = !isThisTrue; // flip isThisTrue

Class variables

thing = new Type(); // construct an object
x = thing.getSomething(); // call a getter method
thing.setSomething(someValue); // call a setter method

thing.doSomething(argumentl, argument2); // call another method

rect = new GRect(42, 42, 100, 100);
x = rect.getX();
thing.setlLocation(19, 97);
thing.move (20, 25);

Class variable types start with capital letters and Primitive
variable types start with lowercase letters

Methods

private methodName (paraml, param2, ...) {
// sick code here
}

e A method header provides some guarantees about the method (what it returns, how
many parameters it takes)

e Parameters and return values generalize the methods we saw in Karel to allow the
use of variables

e [f a method returns something, that something needs to be stored in a variable

storedValue = methodName(/* params */);

Primitive variables passed into a method are passed by value

G raphlcs Things to remember

e (oordinates are doubles

rect = new (50, 50, 200, 200); .
rect.setFilled(true); e Coordinates are measured from the
rect.setColor(Color.BLUE); top left of the screen

oval = new (0, 0, getWidth(), getHeight()); °® Coordinates of a shape are
oval.setFilled(false); coordinates of its top left corner

oval.setColor(Color.GREEN); o Coordinates of a label are

text = new (200, 10); coordinates of its bottom left
o corner
add(text); _
addg.«ecti; e Remember to add objects to the
add(oval); screen!

e Use the online documentation!

https://cs.stanford.edu/people/eroberts/jtf/javadoc/student/

I'm defining a thing called
ClassName

A

\

<ClassName> A

// sick code here

I'm defining a thing called
ClassName

A A

Classname is akind of
SuperClass

L \

<ClassName > <SuperClass> {

// sick code here

Student.java Stanford. java

Creating objects of type

Student

Student { run() {

sl;
// sick code here s2; F ——

SEFA
} // more sick code here

Instance variables

Defined as part of a class, but not within any particular method

Student {

studentName;
studentId;
email;
numUnits;
isInternational;

-

s1, s2 and s3 all have
their own independent
properties

~

Initializing your instance variables in the constructor

Student {

Student(name, id, email,
numUnits, isInternational) {
studentName = name;
studentId = id;
.email = email; // to disambiguate between variables
.numUnits = numUnits;
.isInternational = isInternational;

}

/* instance variables go down here */

Getters and Setters: some notes

Student { Getter and Setter methods are public (exported) so we can

: call them in other classes and programs
Student(unitCount) {

numUnits = unitCount; Define Getters and Setters whenever you want to grant a
client access to or control over an instance variable

getUnits() { These methods are typically very short
numunits;

They allow more precise control over the value of a
variable:

setUnits(newUnits) {
numUnits = newUnits; setUnits(newUnits) {
(newUnits >= numUnits) {

numUnits = newUnits;

int numUnits;

canGraduate() { dropClass (classUnits) {
numUnits >= 5 (classUnits <= 5) {

numUnits -= classUnits;

}

}

Methods allow us to define hehaviours for our
classes

File Processing

try {
rd = new

while () {
line = rd.nextLine();

if (line == null) break;
println(“Just read: ” + line);

}

rd.close();

} catch (ex) {
throw new (ex):

}

(new FileReader (filename));

try {
rd = new (new FileReader (filename));

while (true) {

line = rd.nextline(); < m—— [Can only give you the next line inafiIe}

if (line == null) break;
println(“Just read: ” + line);

}

rd.close();
} catch (ex) {
throw new (ex):

}

try {

rd = new (new FileReader (filename));
while () {
line = rd.nextlLine(); -
if (]_j_ne == null) break; () _ [Denotes the end of the flle, so we end 1
println(“Just read: ” + line); the loop

}

rd.close();
} catch (ex) {
throw new (ex):

}

try {

while () {
line = rd.nextlLine();

rd = new (new FileR— e =
Try living dangerously

if (line == null) break;
println(“Just read: ” + line);

}

rd.close();

} catch (ex) {

throw new (ex): _ [Life insurance

}

public void printFile() {
try {
rd = new
while () {
line = rd.nextLine();
if (line == null) break;

println(line);
}
rd.close();
} catch (ex) {
throw new (ex):

}

(new FileReader (filename));

A practice problem, courtesy of Nick Troccoli

Skip to next section

* Let’s say we’r$ %iven a guest list for a party. The guest list is
0

formatted as follows:
| Nick - 2
> Hannah - 3
1 Isaac - 5
. Austin - 5
5 George - 6

* Specifically, each line has the name of a friend, and how
many people they are bringing. Print out the friend
bringing the most people.

String maxName = “”;
int maxGuests = 0;
try {
BufferedReader rd = new BufferedReader (new
FileReader (“guestList.txt”));
while (true) {
String line = rd.readLine();
if (line == null) break;
StringTokenizer t = new StringTokenizer(line, “—");

String name = t.nextToken().trim();

int numGuests = Integer.parseInt(t.nextToken().trim());

if (numGuests > maxGuests) ({
maxGuests = numGuests;

maxName = name;

Fono

Interactors

A problem

Write a program that allows a user to type in a filename in a text field
and then upon pressing a button print every line of the file.

® You can assume the file exists
e The file may be any number of lines long
e You may not use any data structures

® @ LineReader

This is the first line
This is the second line

The line before this one was a blank line

Filename: textfile.txt

Print lines

public void init() {
label = new ("Filename: ");
add(label, SOUTH);

First, add the interactors in init()

private tf;

public void init() {
label = new ("Filename: ");
add(label, SOUTH);

tf = new (20);

JTextFields are always instance
variables

private tf;

public void init() {
label = new ("Filename: ");
add(label, SOUTH);

tf = new (20);
tf.setActionCommand("Set File");
tf.addActionListener(this);
add(tf, SOUTH);

We always set the action command and add
action listeners to text fields

private tf;

public void init() {
label = new ("Filename: ");
add(label, SOUTH);

tf = new (20);
tf.setActionCommand("Set File");
tf.addActionListener(this);
add(tf, SOUTH);

button = new ("Print lines");
add(button, SOUTH);

Interactors get added to the screen in the
order that we define them

private tf;

public void init() {
label = new ("Filename: ");
add(label, SOUTH);

tf = new (20);
tf.setActionCommand("Set File");
tf.addActionListener(this);
add(tf, SOUTH);

button = new ("Print lines");
add(button, SOUTH);

addActionListeners();

Remember to add ActionListenersto
your program!

public void actionPerformed(Actiontvent e) {
String cmd = e.getActionCommand();

All programs with Action Listeners need an
actionPerformed method

private String filename;

public void actionPerformed(Actiontvent e) {
String cmd = e.getActionCommand();
if (emd.equals("Set File")) {
filename = tf.getText();

}

We go through each of the possible action
commands

private String filename;

public void actionPerformed(Actiontvent e) {
String cmd = e.getActionCommand();
if (emd.equals("Set File")) {
filename = tf.getText();

}

if (emd.equals("Print lines")) {
printFile()

}

We call the printFile method defined in
the last section

private tf;
private String filename;

public void init() { public void actionPerformed(ActionEvent e) {
label = new ("Filename: "); String cmd = e.getActionCommand();
. b . n s L1}
add(label, SOUTH); if (emd.equals("Set File")) {
filename = tf.getText();

tf = new (20); } L))
tf.setActionCommand("Set File"); if (emd.equals("Print lines™)) {
tf.addActionListener(this); printFile()
add(tf, SOUTH); , ¥

button = new ("Print lines");

add(button, SOUTH);

addActionListeners();

Data structures: ArrayLists, HashMaps and

dl'rays

Arrays

Fixed size
Store objects or primitives
No methods, only . 1length

Ordered

Arrays

Fixed size
Store objects or primitives
No methods, only . 1length

Ordered

ArraylLists

Variable size
Store only objects
Methods

Ordered

Arrays

Fixed size
Store objects or primitives
No methods, only . 1length

Ordered

ArraylLists

Variable size
Store only objects
Methods

Ordered

HashMaps$

Variable size
Store only objects

Methods

Key-Value Associations

Arrays

Fixed size
Store objects or primitives
No methods, only . 1length

Ordered

ArrayLists

Variable size

Store only objects

Methods

Ordered
Wrapper classes
int Integer
double Double
boolean Boolean

char Character

—_

HashMaps$

Variable size
Store only objects

Methods

Key-Value Associations

— Use these instead

—

A problem:

Suppose we have a bunch of Stanford Students who want to go to a Masquerade Ball, and a bunch of
carriages of variable size that can take them there. How can we assign the students to these carriages?

< > students =
< > capacities = {1, 3, 2}
printAssignments(students, capacities);

outputs:

Brahm is in carriage 0, which has Brahm

Kate is in carriage 1, which has Kate, Zach, Jade
Zach is in carriage 1, which has Kate, Zach, Jade
Jade is in carriage 1, which has Kate, Zach, Jade
Vasco is in carriage 2, which has Vasco, Olivia
Olivia is in carriage 2, which has Vasco, Olivia

A problem: The Stanford Carriage Pact

Suppose we have a bunch of Stanford Students who want to go to a Masquerade Ball, and a bunch of
carriages of variable size that can take them there. How can we assign the students to these carriages?

< > students =
< > capacities = {1, 3, 2}
printAssignments(students, capacities);

outputs:

Brahm is in carriage 0, which has Brahm

Kate is in carriage 1, which has Kate, Zach, Jade
Zach is in carriage 1, which has Kate, Zach, Jade
Jade is in carriage 1, which has Kate, Zach, Jade
Vasco is in carriage 2, which has Vasco, Olivia
Olivia is in carriage 2, which has Vasco, Olivia

The Stanford Carriage Pact

Questions | would ask myself about this problem

What information do | need to store?

Questions | would ask myself about this problem

What information do | need to store?

Which carriage each student is in, and which students are in each carriage

Questions | would ask myself about this problem

What information do | need to store?
Which carriage each student is in, and which students are in each carriage

What types are these relationships between?

Questions | would ask myself about this problem

What information do | need to store?
Which carriage each student is in, and which students are in each carriage
What types are these relationships between?

String => int, and int => List of students

Questions | would ask myself about this problem

What information do | need to store?

Which carriage each student is in, and which students are in each carriage
What types are these relationships between?

String => int, and int => List of students

What data structures are hest for these relationships?

Questions | would ask myself about this problem

What information do | need to store?

Which carriage each student is in, and which students are in each carriage
What types are these relationships between?

String => int, and int => List of students
What data structures are hest for these relationships?

HashMap<String, Integer> andArraylList<ArraylList<String>>

private void printAssignments(< > students, < > capacities) {
< , > studentsToCarriages = new < , >();
< < >> carriages = new < < >>();

Start by making those data
structures

private void printAssignments(< > students, < > capacities) {

< , > studentsToCarriages = new < , >();
< < >> carriages = new < < >>();
currCarriageldx = 0;
for (int 1 = 9; 1 < students.size(); i++) {

currStudent = students.get(i);
studentsToCarriages.put(currStudent, currCarriageldx);

Optimize for what’s easy - let’s

} assume that
currCarriageIdx is always
correct

private void printAssignments(< > students, < > capacities) {
< , > studentsToCarriages = new < , >();
< < >> carriages = new < < >>();

currCarriageldx = 0;

for (int 1 = 9; 1 < students.size(); i++) {
currStudent = students.get(i);
studentsToCarriages.put(currStudent, currCarriageldx);

if (/* current carriage size */ == capacities.get(currCarriageIdx)) {
// add current carriage to carriages list
// make a new current carriage

currCarriageIdx++;

} Make sure that
} currCarriageIdx isalways
correct

private void printAssignments(< > students, < > capacities) {

< , > studentsToCarriages = new < , >();
< < >> carriages = new < < >>();
< > currentCarriage = new < >();
currCarriageldx = 0;
for (int 1 = 9; 1 < students.size(); i++) {

currStudent = students.get(i);
studentsToCarriages.put(currStudent, currCarriageldx);
currentCarriage.add(currStudent);
if (currentCarriage.size() == capacities.get(currCarriageIdx)) {
carriages.add(currentCarriage);
// make a new current carriage
currCarriageIdx++;

} Use an ArrayList to represent
the currentCarriage

private void printAssignments(< > students, < > capacities) {

< , > studentsToCarriages = new < , >();
< < >> carriages = new < < >>();
< > currentCarriage = new < >();
currCarriageldx = 0;
for (int 1 = 9; 1 < students.size(); i++) {

currStudent = students.get(i);
studentsToCarriages.put(currStudent, currCarriageldx);
currentCarriage.add(currStudent);

if (currentCarriage.size() == capacities.get(currCarriageIdx)) {
carriages.add(currentCarriage);
currentCarriage = new < >();
currCarriageIdx++;
} .
} Use an ArrayList to represent

the currentCarriage

private void printAssignments(< > students, < > capacities)

< , > studentsToCarriages = new < , >();
< < >> carriages = new < < >>();
< > currentCarriage = new < >();
currCarriageldx = 0;
for (int 1 = 9; 1 < students.size(); i++) {

currStudent = students.get(i);
studentsToCarriages.put(currStudent, currCarriageldx);
currentCarriage.add(currStudent);

if (currentCarriage.size() == capacities.get(currCarriageIdx)) {
carriages.add(currentCarriage);
currentCarriage = new < >();
currCarriageIdx++;
}
} Output!
for (int 1 = 9; 1 < students.size(); i++) {

currStudent = students.get(i);

int carriage = studentsToCarriages.get(currStudent);
< > studentsInCarriage = carriages.get(carriage);
println(currStudent + carriage + studentsInCarriage);

private void printAssignments(< > students, < > capacities)

< , > studentsToCarriages = new < , >();
< < >> carriages = new < < >>();
< > currentCarriage = new < >();
currCarriageldx = 0;
for (int 1 = 9; 1 < students.size(); i++) {

currStudent = students.get(i);
studentsToCarriages.put(currStudent, currCarriageldx);
currentCarriage.add(currStudent);

if (currentCarriage.size() == capacities.get(currCarriageIdx)) {
carriages.add(currentCarriage);
currentCarriage = new < >();
currCarriageIdx++;
}
}
for (int i = 0; i < students.size(); i++) {
currStudent = students.get(i);
int carriage = studentsToCarriages.get(currStudent);
< > studentsInCarriage = carriages.get(carriage);
println(currStudent + carriage + studentsInCarriage);
}

HE

The key insight

Any collection supports some notion of iteration over its elements

The key insight

iteration
There are two important pieces of information when you're iterating
Which element you’re currently at

What the next element is

The key insight

Any collection supports some notion of iteration over its elements
There are two important pieces of information when you're iterating
Which element you're currently at
What the next element is

An iterator answers both those questions

An iterator is an arrow...

ArraylList<T> list = new ArraylList<T>();
Tterator<T> it = list.iterator();

list

it

..that can check whether it can move forward...

while (it.hasNext()) {

list

..and then move there.

T nextElem = it.next();

At the end of the list, it can’'t move to the next spot

while (it.hasNext()) {

list

At the end of the list, it can’'t move to the next spot

¥

list

ERRREEN
]

Implementing Interfaces

* An interface is a list of method names (no
implementations!).

* Any class can implement an interface, which means
they provide an implementation of every method in
the interface.

* Interfaces let different classes tell Java they
implement the same behavior. (e.g. GFillable)

* Interfaces let each class implement methods their
own way.

* Let’s write a class Airplane that implements the
Boardable interface. Airplane is initialized with its
capacity. Don’t worry about error-checking.

public interface Boardable {
/** Boards a single passenger, at front or back **/
public void boardPassenger(String name, boolean priority);
/** Returns whether the vehicle is full **/
public boolean isFull();
/** Unboards/returns next passenger **/

public String unboardPassenger();

61

* Need an ArrayLlist of passenger names
* Need an int to store the maximum capacity

public class Airplane implements Boardable {
private ArrayList<String> passengers;
private int capacity;

public Airplane(int numSeats) {
passengers = new ArrayList<String>();
capacity = numSeats;

public void boardPassenger (String name, boolean priority) {

if (priority) {
passengers.add (0, name);

} else {

passengers.add(name) ;

public boolean isFull() {

return capacity == passengers.size();

public String unboardPassenger() {

return passengers.remove(0);

Studying & Exam Strategy

Studying:

Optimize for understanding how everything fits together before how each part works
individually

Become familiar with the textbook!

Don’t ask how, ask why a particular solution you see works

In the exam:
Optimize for what’s easy for you at first
Make sure a grader understands your thought processes

Remain calm

After the exam:

You're done! We'll take it from here.

Remember:

This exam does not define you.

Good luck!

