
CS 106A Midterm Review Session

Brahm Capoor

Gameplan

Logistics

Karel

Java

Graphics & Animation

Classes & Interfaces

Memory

Event-Driven Programming

Characters & Strings

Exam Strategies

Logistics

October 30th, 7-9 PM

Last names A-L: CEMEX Auditorium in the GSB

Last names M-Z: Hewlett 200 (where we have lecture)

Come a little early!

I’ll be holding extended office hours for midterm prep on Tuesday from 12 to 4 pm

BlueBook

Download for Mac here

Download for Windows here

Handout here

Practice exam here (right click -> save link as)

Make sure to have it installed and set up before the exam

http://cs106a.stanford.edu/software/BlueBook-1.1.0.dmg
http://cs106a.stanford.edu/software/BlueBookSetup1.1.0.exe
http://web.stanford.edu/class/cs106a/handouts/30a-Taking-An-Exam-On-BlueBook.pdf
http://web.stanford.edu/class/cs106a/handouts/28a-practice-midterm.json

Karel

Your general strategy for Karel problems

Figure out a general pattern of motion (strategy)

What is the simplest and most general way Karel would move to solve this problem?

Figure out how to break up that motion (top-down decompose)

What are the component parts of Karel’s motion?

Some common patterns of motion

Row-by-row, starting from the left

Column-by-column, starting from the bottom

Follow the beepers

Follow the wall

Diagonal (this is super rare)

Let’s do an example

Our options

Row by row - kind of annoying, a different number of beepers per row

Column by column - kind of annoying, a different number of beepers per column

Follow the wall - doesn’t help here

Diagonal - ¯_(ツ)_/¯

Our options

Row by row - kind of annoying, a different number of beepers per row

Column by column - kind of annoying, a different number of beepers per column

Follow the wall - doesn’t help here

Diagonal - ¯_(ツ)_/¯

Follow the beepers - this could work!

Our strategy

Motion pattern: ‘Follow the beepers’

Get to a starting position, and then lay down each edge

How to decompose this motion

Getting to a starting position: moveUpRow()

Lay down an edge: handleBorder()

Move to the next edge: nextPosition()

Our strategy

Motion pattern: ‘Follow the beepers’

Get to a starting position, and then lay down each edge

How to decompose this motion

Getting to a starting position: moveUpRow()

Lay down an edge: handleBorder()

Move to the next edge: nextPosition()

public void run() {
moveUpRow();
for (int i = 0; i < 4; i++) {

handleBorder();
nextPosition();

}
}

Our strategy

Motion pattern: ‘Follow the beepers’

Get to a starting position, and then lay down each edge

How to decompose this motion

Getting to a starting position: moveUpRow()

Lay down an edge: handleBorder()

Move to the next edge: nextPosition()

private void moveUpRow() {
turnLeft();
move();
turnRight();

}

private void handleBorder() {
move();
while (frontIsClear()) {

if (noBeepersPresent()) {
putBeeper();

}
move();

}
}

private void nextPosition() {
turnRight();
move();
turnRight();
move();
turnRight();

}

Some last things to remember

No non-Karel features! (Variables, parameters, return values, break statements etc)

Postconditions of a code block should match the preconditions of the next code block

If one loop requires that the front is clear, the lines of code before it should guarantee that

Applies to methods, loops, if statements and individual lines of code

Java

Primitive variables
int x = 7; // declare and initialize a variable
x = 9; // change the value of x
x = x + 1; // increment (add 1 to) x. A.K.A. x++
x = x + 2; // add 2 to x. A.K.A. x += 2
x /= 2; // divide x by 2, and truncate result

double d = 3.5;

boolean isThisTrue = true;
isThisTrue = !isThisTrue; // flip isThisTrue

Class variables
Type thing = new Type(); // construct an object
type_1 x = thing.getSomething(); // call a getter method
thing.setSomething(someValue); // call a setter method
thing.doSomething(argument1, argument2); // call another method

GRect rect = new GRect(42, 42, 100, 100);
double x = rect.getX();
thing.setLocation(19, 97);
thing.move(20, 25);

Class variables
Type thing = new Type(); // construct an object
type_1 x = thing.getSomething(); // call a getter method
thing.setSomething(someValue); // call a setter method
thing.doSomething(argument1, argument2); // call another method

GRect rect = new GRect(42, 42, 100, 100);
double x = rect.getX();
thing.setLocation(19, 97);
thing.move(20, 25);

Class variable types start with capital letters and Primitive
variable types start with lowercase letters

Things to remember about variables
The expressive hierarchy

boolean < char < int < double

Compare primitive variables using ==
if (x == 7) {...}

Conditional operators: && and ||
if (x == 7 && y == 6.3)
if (x == 7 || x == 6)

Avoid this:
if (x == 7 || 6)

Use constants!
private static final int MY_NUM = 10;

Methods
private returnType methodName(type param1, type param2, …) {

// sick code here
}

● A method header provides some guarantees about the method (what it returns, how
many parameters it takes)

● Parameters and return values generalize the methods we saw in Karel to allow the
use of variables

● If a method returns something, that something needs to be stored in a variable

returnType storedValue = methodName(/* params */);

● Primitive variables passed into a method are passed by value

Parameters and a return value are both optional!

METHOD PARAMETERS RETURN VALUES

(as many as you
need)

(one or none)

private returnType methodName(type parameter1, type parameter2,...)

private int returnsInt() {...}
private void drawsRect(int width, int length) {...} //void is no type
public boolean frontIsClear() {...} //look familiar?

public void run() {
println(“Choose 2 numbers!”);
int n1 = readInt(“Enter n1”); //5
int n2 = readInt(“Enter n2”); //7

int total = addNumbers(n1, n2);
println (“The total is ” + total);

}

Example: Methods and Parameters

private int addNumbers(int num1, int num2) {
int sum = num1 + num2;
return sum;

}

 5 7

//12

GET n1 AND n2 addNumbers(n1, n2)

num1 = 5, num2 = 7 sum = 12

total = 12 PRINT RESULTrun()

addNumbers()

Variable scope Variables live inside the block, or pair of
braces, in which they’re declared

for (int i = 0; i < 5; i++) {
int y = i * 4;

}
i = 3; // Error!
y = 2; // Error!

… // in some code far, far away

int y = 0;
for (int i = 0; i < 5; i++) {

y = i * 4;
}
y = 2;

Scope for i

Scope for y

Scope for y

Returning in
different places

private int multipleReturns(int x) {

if (x == 5) {
return 0;

}

return 1; // this only happens if x != 5
return 5; // never gets to this line

}

// note: every path through the method ends
with a single return statement

// note: a function ends immediately after it
returns

A trace problem
public void run() {

int num1 = 2;
int num2 = 13;
println("The 1st number is: " + Mystery(num1, 6));
println("The 2nd number is: " + Mystery(num2 % 5, 1 + num1 * 2));

}

private int Mystery(int num1, int num2) {
num1 = Unknown(num1, num2);
num2 = Unknown(num2, num1);
return(num2);

}

private int Unknown(int num1, int num2) {
int num3 = num1 + num2;
num2 += num3 * 2;
return num2;

}

Our strategy: draw stack frames
and trace through each line

A trace problem
public void run() {

int num1 = 2;
int num2 = 13;
println("The 1st number is: " + Mystery(num1, 6));
println("The 2nd number is: " + Mystery(num2 % 5, 1 + num1 * 2));

}

private int Mystery(int num1, int num2) {
num1 = Unknown(num1, num2);
num2 = Unknown(num2, num1);
return(num2);

}

private int Unknown(int num1, int num2) {
int num3 = num1 + num2;
num2 += num3 * 2;
return num2;

}

Another problem

Questions I would ask myself about this problem

What information do I need to store? Where does it need to be available?

What structures lend themselves best to the repeating nature of this problem?

How should I treat the numbers that the user enters?

How I’d answer them

What information do I need to store? Where does it need to be available?

It feels like I need to keep track of the largest and second largest outside the loop

What structures lend themselves best to the repeating nature of this problem?

A while loop, because I don’t know how many numbers the user will enter

How should I treat the numbers that the user enters?

I should compare them to my current largest numbers and update them accordingly

public void run() {
println("This program finds the two largest integers in a");
println("list. Enter values, one per line, using a " + SENTINEL + " to");

 println("signal the end of the list.");

int largest = -1;
int secondLargest = -1;
while (true) {

int input = readInt(" ? ");
if (input == SENTINEL) break;
if (input > largest) {

secondLargest = largest;
largest = input;

} else if (input > secondLargest) {
secondLargest = input;

}
}
println("The largest value is " + largest);
println("The second largest is " + secondLargest);

}

public void run() {
println("This program finds the two largest integers in a");
println("list. Enter values, one per line, using a " + SENTINEL + " to");

 println("signal the end of the list.");

int largest = -1;
int secondLargest = -1;
while (true) {

int input = readInt(" ? ");
if (input == SENTINEL) break;
if (input > largest) {

secondLargest = largest;
largest = input;

} else if (input > secondLargest) {
secondLargest = input;

}
}
println("The largest value is " + largest);
println("The second largest is " + secondLargest);

}

public void run() {
println("This program finds the two largest integers in a");
println("list. Enter values, one per line, using a " + SENTINEL + " to");

 println("signal the end of the list.");

int largest = -1;
int secondLargest = -1;
while (true) {

int input = readInt(" ? ");
if (input == SENTINEL) break;
if (input > largest) {

secondLargest = largest;
largest = input;

} else if (input > secondLargest) {
secondLargest = input;

}
}
println("The largest value is " + largest);
println("The second largest is " + secondLargest);

}

public void run() {
println("This program finds the two largest integers in a");
println("list. Enter values, one per line, using a " + SENTINEL + " to");

 println("signal the end of the list.");

int largest = -1;
int secondLargest = -1;
while (true) {

int input = readInt(" ? ");
if (input == SENTINEL) break;
if (input > largest) {

secondLargest = largest;
largest = input;

} else if (input > secondLargest) {
secondLargest = input;

}
}
println("The largest value is " + largest);
println("The second largest is " + secondLargest);

}

public void run() {
println("This program finds the two largest integers in a");
println("list. Enter values, one per line, using a " + SENTINEL + " to");

 println("signal the end of the list.");

int largest = -1;
int secondLargest = -1;
while (true) {

int input = readInt(" ? ");
if (input == SENTINEL) break;
if (input > largest) {

secondLargest = largest;
largest = input;

} else if (input > secondLargest) {
secondLargest = input;

}
}
println("The largest value is " + largest);
println("The second largest is " + secondLargest);

}

public void run() {
println("This program finds the two largest integers in a");
println("list. Enter values, one per line, using a " + SENTINEL + " to");

 println("signal the end of the list.");

int largest = -1;
int secondLargest = -1;
while (true) {

int input = readInt(" ? ");
if (input == SENTINEL) break;
if (input > largest) {

secondLargest = largest;
largest = input;

} else if (input > secondLargest) {
secondLargest = input;

}
}
println("The largest value is " + largest);
println("The second largest is " + secondLargest);

}

Graphics & Animation

Graphics
GRect rect = new GRect(50, 50, 200, 200);
rect.setFilled(true);
rect.setColor(Color.BLUE);

GOval oval = new GOval(0, 0, getWidth(), getHeight());
oval.setFilled(false);
oval.setColor(Color.GREEN);

GLabel text = new GLabel(“banter”, 200, 10);

add(text);
add(rect);
add(oval);

Things to remember

● Coordinates are doubles

● Coordinates are measured from the
top left of the screen

● Coordinates of a shape are
coordinates of its top left corner

● Coordinates of a label are
coordinates of its bottom left
corner

● Remember to add objects to the
screen!

● Use the online documentation!

https://cs.stanford.edu/people/eroberts/jtf/javadoc/student/

Animation
while(executing condition) {

// update graphics
obj.move(dx, dy);
pause(PAUSE_TIME_MILLISEC);

}

Classes & Interfaces

Programming involves things
which have properties and
behaviour

public class <ClassName> {

// sick code here

}

I’m defining a thing called
ClassName

public class <ClassName> extends <SuperClass> {

// sick code here

}

I’m defining a thing called
ClassName

Classname is a kind of
SuperClass

public class Student {

// sick code here

}

Student.java Stanford.java

public void run() {
Student s1;
Student s2;
Student s3;
// more sick code here

}

Creating objects of type
Student

Instance variables

Defined as part of a class, but not within any particular method

public class Student {

private String studentName;
private int studentId;
private String email;
private int numUnits;
private boolean isInternational;

}

public void run() {

Student s1;
Student s2;
Student s3;

}

s1, s2 and s3 all have
their own independent

properties

Initializing your instance variables in the constructor
public class Student {

public Student(String name, int id, String email,
int numUnits, boolean isInternational) {

studentName = name;
studentId = id;
this.email = email; // to disambiguate between variables
this.numUnits = numUnits;
this.isInternational = isInternational;

}

/* instance variables go down here */
}

Now we can make students!
public class Student {

public Student(String name, int id, String email,
int numUnits, boolean isInternational) {...}

}

public void run() {

Student s1 = new Student(“Brahm”, 31415926, “brahm@stanford.edu”,
 180, true);

}

Getters and Setters
public class Student {

public Student(int unitCount) {
numUnits = unitCount;

}

public int getUnits() {
return numUnits;

}

public void setUnits(int newUnits) {
numUnits = newUnits;

}

private int numUnits;

}

public void run() {

Student s1 = new Student(42);

println(“Curr:” + s1.getUnits());

s1.setUnits(60);

}

Getters and Setters: some notes
public class Student {

public Student(int unitCount) {
numUnits = unitCount;

}

public int getUnits() {
return numUnits;

}

public void setUnits(int newUnits) {
numUnits = newUnits;

}

private int numUnits;

}

Getter and Setter methods are public (exported) so we can
call them in other classes and programs

Define Getters and Setters whenever you want to grant a
client access to or control over an instance variable

These methods are typically very short

They allow more precise control over the value of a
variable:

public void setUnits(int newUnits) {
if (newUnits >= numUnits) {

numUnits = newUnits;
}

}

public boolean canGraduate() {
return numUnits >= 180;

}

public void dropClass (int classUnits) {
if (classUnits <= 5) {

numUnits -= classUnits;
}

}

Methods allow us to define behaviours for our
classes

Interfaces

A list of methods representing non-unique characteristics of a particular class

GOvals are GFillable, GMoveable and GScalable

GLines are GMoveable and GScalable

GLabels are GMoveable

To implement an interface, we have to define all these methods in our own class

Let different classes tell Java they have the same behaviour, but allow for different implementations

Memory

Passing parameters
public void run() {

int x = 7;
doSomething(x);
println(x); // prints 7

}

private void doSomething(int n) {
n *= 2;

}

public void run() {
Student s1 = new Student(42);
doSomething(s1);
println(s1.getUnits()); // prints 84

}

private void doSomething(Student s) {
s.setUnits(s.getUnits() * 2);

}

Student s1 = new Student(“Brahm”, 31415926, “brahm@stanford.edu”, 180, true);
int x = 42;

Under the hood

Stack frame

s1

studentName “Brahm”
studentId 31415926
email “brahm@stanford.edu”
numUnits 180
isInternational true

A ‘reference’ or ‘pointer’

x
42

Going a little deeper

There are two main parts of memory: the stack and the heap

The stack stores local variables, and references to objects

The heap stores objects themselves

== compares whatever’s in the stack

Going even deeper

When we pass a parameter, we pass a copy of whatever’s on the stack

For a primitive, that’s a copy of a value

For an object, that’s a copy of a reference

What does that mean?
public void run() {

Student s1 = new Student(...);
doSomething(s1);
println(s1.getUnits());

}

private void doSomething(Student s) {
s = new Student(...);

}

run()

s1

“Brahm”
31415926
“brahm@...”
42
true

doSomething()

s

What does that mean?
public void run() {

Student s1 = new Student(...);
doSomething(s1);
println(s1.getUnits());

}

private void doSomething(Student s) {
s = new Student(...);

}

run()

s1

“Brahm”
31415926
“brahm@...”
42
true

doSomething()

s

“Trillian”
27182818
“hoolovoo@...”
78
false

What does that mean?
public void run() {

Student s1 = new Student(...);
doSomething(s1);
println(s1.getUnits());

}

private void doSomething(Student s) {
s = new Student(...);

}

run()

s1

“Brahm”
31415926
“brahm@...”
42
true

Event Driven Programming

Why is it necessary?

We tell our computer what to do, and when to do it

We don’t know when a user will click their mouse or type something

We need to specify the behaviour of our program if something happens rather than saying when it
will happen

This programmed behaviour is driven by events out of the control of the program

Two parts to Event Driven programming

1) Subscribe to notifications about user events

addMouseListeners();

2) Specify behaviour when an event occurs

public void mouseClicked(MouseEvent e) {

double clickX = e.getX();

double clickY = e.getY();

// process click

}

A good problem to think about

Characters & Strings

What’s a Character?

A char is a variable that represents a single letter, number or symbol.

Under the hood, it’s a number (as specified by ASCII)

char upperA = ‘A’;

char upperB = (char)(uppercaseA + 1);

int numLetters = ‘z’ - ‘a’ + 1;

What can we do with a Character?

What can we do with a Character?

char c = ‘b’;
char upper = Character.toUpperCase(c);
boolean isDigit = Character.isDigit(c);

Characters are primitives,
so we have a helper class
with all these methods

What’s a String?

A String is a variable that contains arbitrary text data

It consists of a series of chars, in order

It is surrounded by double quotes

What can we do with a string?

Strings are 0-indexed

“banter”
0 1 2 3 4 5

Turning stuff into Strings

Strings are objects
String str = “brahm”;

str
“brahm”

Strings are objects
String str = “brahm”;

str
“brahm”

string reference string literal

An important nuance: string literals are immutable
String str = “brahm”;

str
“brahm”

string reference string literal

...but references aren’t!
String str = “Java”;

str
“brahm”

string reference

“Java”

This leads to a common pattern for String problems

String str = “banter”;
String result = “”; // make a result string
for (int i = 0; i < str.length(); i++) { // iterate through the original string

char c = str.charAt(i); // get the i-th character
char newChar = /* process c */; // process the i-th character
result = result + newChar; // reassign the result string to a new

} // literal

result and result + newChar are
different literals

Why are Strings immutable?

¯_(ツ)_/¯
There’s actually a cool reason! Come and chat about it in office hours!

String Tokenizers
Key idea: Strings can be viewed as collections of whitespace-separated tokens

private void printTokens(String str){
StringTokenizer t = new StringTokenizer(str);
while (t.hasMoreTokens()){

println(“Next token: ” + t.nextToken());
}

}

A final problem

Questions I’d ask myself

What do I do with each character?

Questions I’d ask myself

What do I do with each character?

If it isn’t the same as the last character, I add it to the result string

Questions I’d ask myself

What do I do with each character?

If it isn’t the same as the last character, I add it to the result string

How do I get the last character?

Questions I’d ask myself

What do I do with each character?

If it isn’t the same as the last character, I add it to the result string

How do I get the last character?

I go to the index before my current one

Questions I’d ask myself

What do I do with each character?

If it isn’t the same as the last character, I add it to the result string

How do I get the last character?

I go to the index before my current one

Is there anything else I’d need to think about?

Questions I’d ask myself

What do I do with each character?

If it isn’t the same as the last character, I add it to the result string

How do I get the last character?

I go to the index before my current one

Is there anything else I’d need to think about?

The character at index 0 doesn’t have a character before it but needs to go into the string

The solution

private String removeDoubledLetters(String str) {
String result = "";
for (int i = 0; i < str.length(); i++) {

char ch = str.charAt(i);
if (i == 0 || ch != str.charAt(i - 1)) {

result += ch;
}

}
return result;

}

The solution

private String removeDoubledLetters(String str) {
String result = "";
for (int i = 0; i < str.length(); i++) {

char ch = str.charAt(i);
if (i == 0 || ch != str.charAt(i - 1)) {

result += ch;
}

}
return result;

}

The solution

private String removeDoubledLetters(String str) {
String result = "";
for (int i = 0; i < str.length(); i++) {

char ch = str.charAt(i);
if (ch != str.charAt(i - 1)) {

result += ch;
}

}
return result;

}

The solution

private String removeDoubledLetters(String str) {
String result = "";
for (int i = 0; i < str.length(); i++) {

char ch = str.charAt(i);
if (i == 0 || ch != str.charAt(i - 1)) {

result += ch;
}

}
return result;

}

Exam Strategies

My main advice: understand, don’t memorize

Decompose as you write your code

Try to attempt every problem, even if you’re not sure how to finish it off.

If you’re not sure about something, ask questions!

Try not to rely too much on your notes and books

Compile a quick reference sheet

Don’t panic!

Good luck!

