
Simple Java YEAH Hours

Juliette Woodrow and Brahm Capoor

What are YEAH hours?

Held soon after each assignment is released

Help you to get an early start on your assignments

Future dates TBA

Slides will be posted!

Roadmap

Review

Assignment overview and tips

Questions

Dropping the mic on Karel

Karel taught us a lot of things!

Dropping the mic on Karel

Karel taught us a lot of things!

Control Flow

Dropping the mic on Karel

Karel taught us a lot of things!

Control Flow

Decomposition & Top Down Design

Dropping the mic on Karel

Karel taught us a lot of things!

Control Flow

Decomposition & Top Down Design

Algorithmic Strategy

Control Flow in Karel
for (int i = 0; i < 5; i++) { // do whatever is in the loop 5 times

if (beepersPresent()) { // what to do if a particular condition is true
move();

} else { // what to do if that condition is false
putBeeper();

}
}

while (frontIsClear()) { // do this until a particular condition is false
move();
putBeeper();

}

Control Flow outside Karel
for (int i = 0; i < 100; i++) { // do whatever is in the loop 100 times

if (i % 2 == 0) { // what to do if a particular condition is true
println(“Even: ” + i);

} else { // what to do if that condition is false
println(“Odd: ” + i);

}
}

while (true) { // loop indefinitely
if (agentOfChaos()) {

break; // savagely immediately end while loop
}
print(“Good prevails!”);

}

Control Flow-ception
for (int i = 0; i < 10; i++) {

for (int j = 0; j < 10; j++) {
if (i == j) {

println(“i and j are equal!”);
} else {

int difference = i - j;
if (difference > 0) {

println(“i is bigger than j by ” + difference + “!”);
} else {

println(“j is bigger than i by ” + difference + “!”);
}

}
}

}

Control Flow-ception
for (int i = 0; i < 10; i++) {

for (int j = 0; j < 10; j++) {
if (i == j) {

println(“i and j are equal!”);
} else {

int difference = i - j;
if (difference > 0) {

println(“i is bigger than j by ” + difference + “!”);
} else {

println(“j is bigger than i by ” + difference + “!”);
}

}
}

}

// bruh.

Control Flow-ception
for (int i = 0; i < 10; i++) {

for (int j = 0; j < 10; j++) {
if (i == j) {

println(“i and j are equal!”);
} else {

int difference = i - j;
if (difference > 0) {

println(“i is bigger than j by ” + difference + “!”);
} else {

println(“j is bigger than i by ” + difference + “!”);
}

}
}

}

Graphics
GRect rect = new GRect(50, 50, 200, 200);
rect.setFilled(true);
rect.setColor(Color.BLUE);

GOval oval = new GOval(0, 0, getWidth(), getHeight());
oval.setFilled(false);
oval.setColor(Color.GREEN);

GLabel text = new GLabel(“banter”, 200, 10);

add(text);
add(rect);
add(oval);

Graphics
GRect rect = new GRect(50, 50, 200, 200);
rect.setFilled(true);
rect.setColor(Color.BLUE);

GOval oval = new GOval(0, 0, getWidth(), getHeight());
oval.setFilled(false);
oval.setColor(Color.GREEN);

GLabel text = new GLabel(“banter”, 200, 10);

add(text);
add(rect);
add(oval);

Things to remember

● Coordinates are doubles

● Coordinates are measured from the
top left of the screen

● Coordinates of a shape are
coordinates of its top left corner

● Coordinates of a label are
coordinates of its bottom left
corner

● Remember to add objects to the
screen!

● Use the online documentation!

https://cs.stanford.edu/people/eroberts/jtf/javadoc/student/

Primitive variables
int x = 7; // declare and initialize a variable
x = 9; // change the value of x
x = x + 1; // increment (add 1 to) x. A.K.A. x++
x = x + 2; // add 2 to x. A.K.A. x += 2
x /= 2 // divide x by 2, and truncate result

double d = 3.5;

boolean isThisTrue = true;
isThisTrue = !isThisTrue; // flip isThisTrue

Primitive variables
int x = 7; // declare and initialize a variable
x = 9; // change the value of x
x = x + 1; // increment (add 1 to) x. A.K.A. x++
x = x + 2; // add 2 to x. A.K.A. x += 2
x /= 2 // divide x by 2, and truncate result

double d = 3.5;

boolean isThisTrue = true;
isThisTrue = !isThisTrue; // flip isThisTrue

Things to remember

● The expressive hierarchy:
boolean < char < int < double

● Compare variables using ==
if (x == 7) {...}

● Conditional operators: && and ||
if (x == 7 && y == 6.3)
if (x == 7 || x == 6)
Avoid this:
if (x == 7 || 6)

● Use constants!
private static final int MY_NUM = 10;

Methods
private returnType methodName(type param1, type param2, …) {

// sick code here
}

● A method header provides some guarantees about the method (what it returns, how
many parameters it takes)

● Parameters and return values generalize the methods we saw in Karel to allow the
use of variables

● If a method returns something, that something needs to be stored in a variable

returnType storedValue = methodName(/* params */);

● Primitive variables passed into a method are passed by value

Methods, parameters and variables

Parameters and a return value are both optional!

METHOD PARAMETERS RETURN VALUES

(as many as you
need)

(one or none)

private returnType methodName(type parameter1, type parameter2,...)

private int returnsInt() {...}
private void drawsRect(int width, int length) {...} //void is no type
public boolean frontIsClear() {...} //look familiar?

public void run() {
println(“Choose 2 numbers!”);
int n1 = readInt(“Enter n1”); //5
int n2 = readInt(“Enter n2”); //7

int total = addNumbers(n1, n2);
println (“The total is ” + total);

}

Example: Methods and Parameters

private int addNumbers(int num1, int num2) {
int sum = num1 + num2;
return sum;

}

 5 7

//12

GET n1 AND n2 addNumbers(n1, n2)

num1 = 5, num2 = 7 sum = 12

total = 12 PRINT RESULTrun()

addNumbers()

Variable scope Variables live inside the block in which
they’re declared

for (int i = 0; i < 5; i++) {
int y = i * 4;

}
i = 3; // Error!
y = 2; // Error!

… // in some code far, far away

int y = 0;
for (int i = 0; i < 5; i++) {

y = i * 4;
}
y = 2;

Scope for i

Scope for y

Scope for y

Returning in
different places

private int multipleReturns(int x) {

if (x == 5) {
return 0;

}

return 1; // this only happens if x != 5
return 5; // never gets to this line

}

// note: every path through the method ends
with a single return statement

// note: a function ends immediately after it
returns

Assignment 2!

High level overview
● Due Monday 10/15/2018

● 6 Problems

● 3 Graphics Programs

● 3 Console Programs

Problem 1

Questions to ask yourself:

1. What sort of control flow structure
best suits this problem?

2. How do I decompose this problem?
3. What information do I need to draw a

row and the bricks inside a row?

 Draw a pyramid!

Useful ideas from lecture

● You can use the variables inside for loops!
● You can nest for loops!
● This checkerboard example from lecture

Useful methods
● getWidth() tells you the width of the canvas
● getHeight() tells you the height of the canvas
● rect.getWidth() tells you the width of rect
● rect.getHeight() tells you the height of rect
● See lecture and GRect documentation for more!

** remember that coordinates should be doubles

https://cs.stanford.edu/people/eroberts/jtf/javadoc/student/acm/graphics/GRect.html

Problem 2

Questions to ask yourself:

1. Can this problem be decomposed?
2. What information is needed to draw

each circle?

 Bullseye!

Useful ideas from lecture

● How methods can be used to encapsulate repeated
functionality

Useful methods
● See lecture and GOval documentation for more!

https://cs.stanford.edu/people/eroberts/jtf/javadoc/student/acm/graphics/GOval.html

Problem 3

Questions to ask yourself:

1. Can this problem be decomposed?
2. What information is needed to draw

each rectangle?

 CS 106A Tiles

Useful ideas from lecture

● How methods can be used to encapsulate repeated
functionality

● Remember that a label’s coordinate is its bottom left
corner

Useful methods
● label.getAscent() tells you the distance

between the baseline of the label and the top of the
label. This is useful for centering!

● See lecture and GRect documentation and GLabel
documentation for more!

https://cs.stanford.edu/people/eroberts/jtf/javadoc/student/acm/graphics/GRect.html
https://cs.stanford.edu/people/eroberts/jtf/javadoc/student/acm/graphics/GLabel.html

Problem 4

Questions to ask yourself:

1. What data type should I store
numbers as?

2. How many variables do I need?

 Pythagorean Theorem

Useful ideas from lecture

● Primitive data types
● The expressive hierarchy

Useful methods
● math.sqrt(n) tells you the square root of n
● Look at the lecture for more!

Problem 5

Questions to ask yourself:

1. What sorts of things do you need to
store?

2. How do you initialize variables?

Keeping track of the largest and smallest

Useful ideas from lecture

● Loop structures
● Variable scope
● Edge cases
● Sentinel values

Problem 6

Questions to ask yourself:

1. What sorts of things do you need to
store?

2. How do you initialize variables?

Hailstone sequence

Useful ideas from lecture

● Loop structures
● Variable scope
● Edge cases
● Sentinel values

A last few tips and tricks

● “Write a GraphicsProgram SubClass”: Don’t worry about what this means! (You’ll learn a lot about this in a
few weeks)

● Draw things on paper for Graphics Programs
● Use Top Down Decomposition wherever you can
● Go to the LaIR (6:50-10:50 PM, First floor of Tresidder)!
● Incorporate your IG feedback!
● Use the debugger!
● Work on extensions

Questions?

