Breakout YEAH hours

Sam Kim & Brahm Gapoor



Road Map

e lecture Review
e Assignment Overview
o (Q&Al



Primitive variables

~+
X X O X

in =7;

J
+ 1;
+ 2;

SN nono

X X X X

= 2
double d = 3.5;

boolean isThisTrue = 5
isThisTrue = !isThisTrue;



G raphlcs Things to remember

e (oordinates are doubles

GRect rect = GRect(50, 50, 200, 200); _
: Coordinates are measured from the

rect. (true); left of th
rect. (Color.BLUE); top left of the screen
Goval oval = new GOval(®, @, getWidth(), getHeight()); Coor;l_mates of a Shap‘I’ ore
sl (false); coordinates of its top left corner
oval. Color.GREEN); _

( ) Coordinates of a label are
Glabel text = GLabel(“banter”, 200, 10); coordinates of its bottom left

corner

add(text); _
add(rect); Remen|1ber to add objects to the
add(oval); B

Use the online documentation!

These are class variables!



https://cs.stanford.edu/people/eroberts/jtf/javadoc/student/

Methods, parameters and variables




METHOD

(as many as you
need)

(one or none)

private returnType methodName(type parameterl, type parameter2, )
private int returnsInt() {...}

private void drawsRect(int width, int length) {...} //void is no type
public boolean frontIsClear() {...} //look familiar?

Parameters and a return value are both optional!



Example: Methods and Parameters

5 7
public void run() { private int addNumbers(int numl, int num2) {
println(“Choose 2 numbers!”); int sum = numl + num2; //12
int nl1 = readInt(“Enter nl1”); //5 return sum;
int n2 = readInt(“Enter n2”); //7 }

int total = addNumbers(nl, n2);
println (“The total is ” + total);

run() GET n1 AND n2 addNumbers(nl, n2) PRINT RESULT

addNumbers () numl = 5, num2




Variables live inside the block in which

Variable SCope they’re declared

for (int 1 = @; i < 5; i++) {

Scope for i Jinty =i * 4;
}
i=3; // Error!
y = 2; // Error!
int y = 0;
for (int 1 = 0; 1 < 5; i++) {

Scope for y y = 1% 4;

}
y = 2; // Ayy!



Instance variables

Should you use an instance variable?

private int x; // belongs to the instance YES
of the program - You access & change the variable everywhere
You use it in mouseListener methods
public void run() { - You have literally no other choice
X = 2;
addTwo(); NO
println(x); // prints 4 - It makes information flow more annoying to visualize
} (parameters are easier)
Poor style to build up unnecessary instance
private void addTwo() { variables
X += 2;

} The opposite of an instance variable is a local variable



private int multipleReturns(int x) {
if (x == 5) {

Returning in ;e

return 1; // this only happens if x != 5

different placeS } return 5; // never gets to this line

// note: every path through the method ends
with a single return statement

// note: a function ends immediately after it
returns




Mouse Movement

addMouselListeners(); // this needs to happen before the program can respond to the mouse!

public void mouseMoved(MouseEvent e) { // remember to make this public!
double mouseX = e.getX(); // get the x-coordinate of where the mouse moves to
double mouseY = e.getY(); // get the x-coordinate of where the mouse moves to

Things to remember:
e  (Other things you can do with the mouse: mouseClicked(mouseEvent e), mouseDragged(mouseEvent e)
o Check the textbook and the online documentation for more!

e mouselListeners are called parallel to your code, they happen as soon as you move the mouse

o aslong as you've called addMouseListeners() already!


https://docs.oracle.com/javase/6/docs/api/java/awt/event/MouseListener.html

Breakout!

Due Wednesday, October 24




’
o’

What we’re making




/..

* Width ond height of application window, in pixels.

* These should be used when setting up the initial size of the game,
J H * but in later calculations you should use getWidth() and getHeight()

a you re glven * rather than these constants for accurate size information.

./

public static final int APPLICATION_WIDTH = 420;

public static final int APPLICATION_HEIGHT = 600;

/** Dimensions of game board (usually the same), in pixels */
public static final int BOARD_WIDTH = APPLICATION_WIDTH;
public static final int BOARD_HEIGHT = APPLICATION_HEIGHT,

/** Number of bricks in each row */
public static final int NBRICKS_PER_ROW = 10;

/** Number of rows of bricks */

PY These are consta“ts public static final int NBRICK_ROWS = 10;

/** Separation between neighboring bricks, in pixels */
public static final int BRICK_SEP = 4;

o Use getWidth() and getHeight () for dimensions of /** Width of each brick, in pixels */

public static final double BRICK_WIDTH =
(BOARD_WIDTH - (NBRICKS_PER_ROW + 1.0) * BRICK_SEP) / NBRICKS_PER_ROW;

window, not the ones in the constants! /** Height of each brick, in pixels */

public static final int BRICK_HEIGHT = 8;

/** Offset of the top brick row from the top, in pixels */

e You might need to add more instance variables... BEtic suite il 19 MICK EOFRET = 14;

/** Dimensions of the paddle */
public static final int PADDLE_WIDTH = 60;
public static final int PADDLE_HEIGHT = 10;

/** Offset of the paddle up from the bottom */
public static final int PADDLE_Y_OFFSET = 30;

/** Radius of the ball in pixels */
public static final int BALL_RADIUS = 10;

/** initial random velocity that you should choose */
public static final double VELOCITY_MIN = 1.0;
public static final double VELOCITY_MAX = 3.0;

/** Animation delay or pause time between ball moves (ms) */
public static final int DELAY = 1000 / 60;

/** Number of turns */
public static final int NTURNS = 3;



MILESTONE 1: BRICKS

e  Similar to pyramid!
e  Drawing multiple rows
o Figure out how to draw one
row first
o Bricks should be centered
horizontally
e Reasonable coloring for any number of

rows

A G
| —
i —t——t —-
! —

—4 e e
— —

S N U RSP N N—
| L r 1 1}

i gt oy | SN ool (R S |
El = | S i Sl == |

NP S | PSS
I l I



MILESTONE 2: PADDLE

e  How do you make the mouse control
the paddle?
e  (Chapter 9: GObject Methods
e  Chapter 10: Event Driven Programs
(responding to mouse events)
e Things to consider:
o  Paddle only needs to move in
the x direction
o  Paddle can’t move off the

screen

X




Milestone 3: Play Ball!

e  How do we move the ball?

e  How do you choose the direction of the
ball?

e  What information do we need in the

GOval constructor?

BALL RADIUS*2




while(executing condition) {
// update graphics

|| |
Animation peuse PALSE TINE
pause (PAUSE_TIME_MILLISEC);




Moving the ball

double vx;
double vy;

while(existing condition) {
// update graphics
ball.move(vx, vy);
pause (PAUSE_TIME_MILLISEC);



Choosing the direction of the ball

//make a random generator instance variable
private RandomGenerator rgen = RandomGenerator.getInstance();

//give the ball an initial direction
vx = rgen.nextDouble(1.0, 3.0); // choose speed
if(rgen.nextBoolean(0.5)) vx = -vx; // choose left or right

//wait until player clicks the screen
waitForClick();



MILESTONE 4: COLLISIONS

Main idea: Check if there’s anything at each of the 4 corners and return one GObject
1 2
(x,») r 1 (x+2ny)
(x,y+2r) x+2r,y +2r)
3 4

Useful method: public GObject getElementAt(double x, double y);



e e e e e ey e e i
e e e e iy e ey e o

Handling collisions redux

private GObject getCollidingObject() {
// sick code Y
// return a GObject —

GObject collider = getCollidingObject();
// only need to bounce vertically for collisions with brick, top wall and paddle
// only need to bounce horizontally for collisions with side walls

Things to think about: what direction needs to be flipped when?

This is just like the bouncing ball example in the handout!



e Remove the ball when it goes off the
screen
o remove(obj);

Ending the game

e Winning and losing
o How? Bricks!




The sticky paddle ®



TBStl ﬂ g VO U r e Check if it deals with changed

constants

p rﬂgra m e Mega paddle

e Sticky paddle
e (razy random player




Wrapping up

Read the spec!
Extensions!
Commenting!
Ask for help!

Incorporate |G feedback!



