
YEAHtzee
Tuesday	Nov	6	2018
Aamnah Khalid	and	
Peter	Maldonado

ArrayLists
•Why	ArrayLists?
• Your	may	not	know	how	much	data	you	need

• ArrayLists are	dynamically	sized	(grow	as	needed)
• Can	check	if	something	is	in	it	with	.contains()
• Can	only	store	objects	(no	primitives!)
•Must	use	wrapper	classes	(e.g.	Integer for	int)	as	
substitute	for	primitives

ArrayList<Type> myList = new
ArrayList<Type>();

ArrayListMethods

Arrays

•Why	Arrays?
• Great	for representing	a	fixed-size	list
•We	want	to	use	the	most	efficient	data	structure	possible

• Store	data	at	different	indices	in	the	array,	and	then	look	
up	by	index
• Can	only	store	both	objects	and	primitives!
Type[] myArray = new Type[SIZE];

ArrayLists
•Fixed	length	
(specify	when	
created)
•Store	objects	
and	primitives
•Only	attribute	
is	.length

Arrays

•Variable	length
•Store	only	
objects
•Class	with	
methods	like	
.contains

Both

•Store	
sequences	of	
data
•Homogeneous	
(single	type)

Array	Operations
• To	create	a	new	array	we	to	specify	Type and	SIZE in	a	
call	to	new

Type[] myArray = new Type[SIZE];
• To	access	an	element	in	the	array,	use	the	square	brackets	
to	choose	the	index

myArray[index]
• This	evaluates	to	a	reference to	that	position	in	the	array

•While	arrays	don’t	have	methods,	they	have	a	single	field	
for	their	length

myArray.length

2D	Arrays	(Grids)
What	if	Type is	an	array?	(e.g.	int[])

Type[] myGrid = new
Type[numElems];

Type[] myGrid = new
Type[numElems];
Let’s	try	setting	Type to	int[]

int[][] myGrid = new
int[numArrs][numElems];

int[][] myGrid = new
int[arrays][elems];
• This	works	since	each	int[] is	an	object
• We	make	an	array	of	integer	arrays!	
• This	is	why	we	say	our	array	spans	two	dimensions

• Note:	we	must	specify	size	of	each	array	(numArrs and	
numElems)	

Type[][] myGrid = new
Type[rows][cols];
• Each	row	is	an	array	
• Each	column	represents	an	index	that	exists	in	each	row	array
• Each	element	is	at	a	specific	column	in	a	specific	row!

Interpreting	Multidimensional	Arrays	
•As	2D	Grid
• Looking	up	
arr[row][col] selects	
the	element	in	the	array	at	
position	(row, col)

•As	an	array	of	arrays
• Looking	up	arr[n] gives	
back	a	one-dimensional	array	
representing	the	n+1–th row	
• Remember	we	get	a	reference	
to	that	array!

• First	dimension	indexes	
different	arrays,	second	
dimension	indexes	elements	
in	a	particular	array

int[][] multiArr = new
int[4][5];

What	does	this	evaluate	to?	(What	is	returned?)
multiArr[1]

multiArr[2][3]

int[5] ->	a	reference	to	
an	array	of	five	integers
int ->	a	single	integer	
value

Accessing	Arrays	Uses	References!
public class HelloWorld {

public static void main(String []args) {
int[][] full = new int[3][3];
int[] row = full[1];
row[1] = 4;
int[] newRow = new int[3];
newRow[0] = 6;
full[2] = newRow;

}
}

full

- - - full[0]

full[1]

full[2]

- - -

- - -

Accessing	Arrays	Uses	References!
public class HelloWorld {

public static void main(String []args) {
int[][] full = new int[3][3];
int[] row = full[1];
row[1] = 4;
int[] newRow = new int[3];
newRow[0] = 6;
full[2] = newRow;

}
}

full

- - - full[0]

full[1]

full[2]

- 4 -

- - -

row

Accessing	Arrays	Uses	References!
public class HelloWorld {

public static void main(String []args) {
int[][] full = new int[3][3];
int[] row = full[1];
row[1] = 4;
int[] newRow = new int[3];
newRow[0] = 6;
full[2] = newRow;

}
}

full

- - - full[0]

full[1]

full[2]

- 4 -

- - -

row

6 - -newRow

Accessing	Arrays	Uses	References!
public class HelloWorld {

public static void main(String []args) {
int[][] full = new int[3][3];
int[] row = full[1];
row[1] = 4;
int[] newRow = new int[3];
newRow[0] = 6;
full[2] = newRow;

}
}

full

- - - full[0]

full[1]

full[2]

- 4 -row

6 - -newRow

Accessing	Arrays	Uses	References!
public class HelloWorld {

public static void main(String []args) {
int[][] full = new int[3][3];
int[] row = full[1];
row[1] = 4;
int[] newRow = new int[3];
newRow[0] = 6;
full[2] = newRow;

}
}

full

- - - full[0]

full[1]

full[2]

- 4 -row

6 - -newRow

int[][] swap = new int[3][4];

[0][0] [0][1] [0][2] [0][3]

[1][0] [1][1] [1][2] [1][3]

[2][0] [2][1] [2][2] [2][3]

swap[1] swap[2][3]
columns

r
o
w
s

int[][] swap = new int[3][4];

[0][0] [0][1] [0][2] [0][3]

[1][0] [1][1] [1][2] [1][3]

[2][0] [2][1] [2][2] [2][3]

swap[1] swap[2][3]
columns

r
o
w
s

int[][] swap = new int[3][4];

[0][0] [0][1] [0][2] [0][3]

[1][0] [1][1] [1][2] [1][3]

[2][0] [2][1] [2][2] [2][3]

swap[1] swap[2][3]
columns

r
o
w
s

int[][] swap = new int[3][4];

[0][0] [0][1] [0][2] [0][3]

[1][0] [1][1] [1][2] [1][3]

[2][0] [2][1] [2][2] [2][3]

swap[1] swap[2][3]
columns

r
o
w
s

int[][] swap = new int[4][3];

[0][0] [1][0] [2][0] [3][0]

[0][1] [1][1] [2][1] [3][1]

[0][2] [1][2] [2][2] [3][2]

swap[1] swap[3][2]
rows

c
o
l
u
m
n
s

Dimension	Swapping
• Swapping	dimension	sizes	switches	which	dimension	of	a	
grid		is	represented	as	1D	arrays
• Remember	2D	arrays	always	follow	
Type[][] myGrid = new
Type[numArrs][numElems];

•Doesn’t	change	total	elements	in	grid,	flips	rows	and	
columns
Type[][] myGrid = new Type[rows][cols];

•Number	of	rows	is	number	of	arrays,	number	of	cols	is	
number	of	elements	in	each	array!

Iterating	Through	a	2D	Array

Type[][] arr = /* ... */
for (int row = 0; row < arr.length; row++) {

for (int col = 0; col < arr[row].length; col++) {
/* access arr[row][col] ... */

}
}

2D	Array	Example
double[][] arr = new double[2][3]
for (int row = 0; row < arr.length; row++) {

for (int col = 0; col < arr[row].length; col++) {
arr[row][col] = col / (double)(row + 1);

}
}

0.0 1.0 2.0

0.0 0.5 1.0

Another	2D	Array	Example
int[][] arr = new int[2][3]
for (int row = 0; row < arr.length; row++) {

for (int col = 0; col < arr[row].length; col++) {
if (row == col) {

arr[row][col] = 1;
} else {

arr[row][col] = 0;
}

}
} 1 0 0

0 1 0

Flipping	an	Array!

orig

2 4 6 8

0 1 2 3

• How	many	times	do	we	flip	elements?	What	is	this	number	relative	to	the	size	of	
the	array?

Flipping	an	Array!

flip

2 8

4 6

0 1 2 3

• How	many	times	do	we	flip	elements?	What	is	this	number	relative	to	the	size	of	
the	array?

Flipping	an	Array!

flip

8 2

4 6

0 1 2 3

• How	many	times	do	we	flip	elements?	What	is	this	number	relative	to	the	size	of	
the	array?

Flipping	an	Array!

flip

8 4 6 2

0 1 2 3

• How	many	times	do	we	flip	elements?	What	is	this	number	relative	to	the	size	of	
the	array?

Flipping	an	Array!

flip

4 6

8 2

0 1 2 3

• How	many	times	do	we	flip	elements?	What	is	this	number	relative	to	the	size	of	
the	array?

Flipping	an	Array!

flip

6 4

8 2

0 1 2 3

• How	many	times	do	we	flip	elements?	What	is	this	number	relative	to	the	size	of	
the	array?

Flipping	an	Array!

flip

8 6 4 2

0 1 2 3

• How	many	times	do	we	flip	elements?	What	is	this	number	relative	to	the	size	of	
the	array?

Flipping	an	Array!

orig

2 4 6 8

0 1 2 3

• How	many	times	do	we	flip	elements?	What	is	this	number	relative	to	the	size	of	
the	array?
• Only	need	to	perform	orig.length / 2 swaps!
• Each	element	in	the	front	half	of	the	array	swapped	with	corresponding	element	in	back	half

flip

8 6 4 2

0 1 2 3

Flipping	an	Array!
private void flip(int[] toFlip) {

for (int i = 0; i < toFlip.length / 2; i++) {
int tmp = toFlip[i];
toFlip[i] = toFlip[toFlip.length – i – 1];
toFlip[toFlip.length - i - 1] = tmp;

}
}

flip

8 6 4 2

0 1 2 3

orig

2 4 6 8

0 1 2 3

Flipping	a	2D	Array!
private void flip(int[][] toFlip) {

for (int i = 0; i < toFlip.length / 2; i++) {
int[] tmp = toFlip[i]; /* we swap integer

arrays instead! */
toFlip[i] = toFlip[toFlip.length – i – 1];
toFlip[toFlip.length - i - 1] = tmp;

}
}

Yahtzee	Assignment
DUE		at	1:30PM	on	Wednesday,	Nov.	14

Graphics	already	implemented	for	you
Practice	with	arrays

Demo

What	is	provided	in	the	starter	project?

• Yahtzee.java: Initialization code provided, expand to play the
game.
• YahtzeeConstants.java: defines several constants used in the

game. Note the category constants at the end of the file
• YahtzeeDisplay: manages all the graphics and event handling (Check

out the JavaDoc on website)
• YahtzeeMagicStub: exports a method checkCategory that will

allow you to get your program working a little sooner. Eventually you
need to write this method yourself! (Check out the JavaDoc on website)

...

/* The constants that specify categories on the
scoresheet */
public static final int ONES = 1;
public static final int TWOS = 2;
public static final int THREES = 3;
public static final int FOURS = 4;
public static final int FIVES = 5;
public static final int SIXES = 6;
public static final int UPPER_SCORE = 7;
public static final int UPPER_BONUS = 8;
public static final int THREE_OF_A_KIND = 9;
public static final int FOUR_OF_A_KIND = 10;
public static final int FULL_HOUSE = 11;
public static final int SMALL_STRAIGHT = 12;
public static final int LARGE_STRAIGHT = 13;
public static final int YAHTZEE = 14;
public static final int CHANCE = 15;
public static final int LOWER_SCORE = 16;
public static final int TOTAL = 17;

Yahtzee	Display	Class	Methods
public YahtzeeDisplay(GCanvas gc,
String[] playerNames)
public void waitForPlayerToClickRoll(int player)
public void displayDice(int[] dice)
public void waitForPlayerToSelectDice()
public boolean isDieSelected(int index)
public int waitForPlayerToSelectCategory()
public void updateScorecard(int category,
int player, int score)
public void printMessage(String message)

Game	Setup
•User	enters	the	names	of	the	players,	one	at	
a	time
•Up	to	4	players
•Methods	in	the	YahtzeeDisplay class	
take	player	numbers	that	run	from	1	to	the	
number	of	players	(not	starting	from	0)

Each	Turn
• Each	player	takes	a	turn:
o Rolls	dice	1st time
o Selects	a	set	of	dice	to	reroll	(if	any)	and	
reroll
o Repeats	step	2
o Selects	a	category	to	use	for	that	turn	
(must	not	have	been	used	before)

Each	Turn

• The	total	score	is	updated	everytime any	category	
score	is	updated	(i.e.,	after	each	player's	tur
•A	player	will	sometimes	have	to	choose	a	category	
that	doesn’t	match	the	configuration	of	the	dice.	
Score	will	be	0	in	selected	category.
•13	rounds	in	total	(one	score	for	each	category)

Calculating	Score
•Any	roll	is	valid	for	1s,	2s,	3s,	4s,	5s,	6s,	and	chance	
•Not	all	rolls	valid	for:3	Of	a	Kind,	4	Of	a	Kind,	Yahtzee,	
Full	House,	Straights	(score	=	0)	
•When	checking	if	roll	fits	category,	think	about	dice	
value	frequencies	(e.g.	what	is	3	of	a	kind	with	respect	
to	dice	value	frequencies?)	
boolean p = YahtzeeMagicStub.checkCategory

(dice, FULL_HOUSE);

End	of	Game

•Sum	up	Upper	Bonus,	Upper	Score,	
Lower	Score,	Final	Total	
•Report	winner	

Tips
• Use	System.out.println()	to	print	testing	messages	to	the	
Eclipse	console	(can’t	use	println()	
• Hardcode	dice	array	so	you	always	control	what	the	dice	rolls	
are	(great	for	testing!)
• A	user	cannot re-use	any	previous	category.	Print	a	message	
if	you	cannot	honor	their	choice	and	have	them	select	
another
•Mark	all	methods	as	private unless	you	explicitly	plan	for	
them	to	be	used	outside	the	module
• Determining	the	validity	for	Three	of	a	Kind,	Four	of	a	Kind,	
Yahtzee,	and	Full	House	is	similar

ARRAYS
•Dice	(N_DICE)	
•Players	(array	of	player	names	given	
to	you	in	starter	code	as	instance	
variable)	
•Scorecard	for	all	players	(2D	array	
representing	scorecard)	

ARRAYS
•Be	deliberate	and	creative	about	when	
arrays	might	be	useful	data	types	to	
store	other	information
•Think	about	how	to	index	into	Arrays	i.e.	
what	the	element	at	index	i actually	
means

Libraries
•Read	the	YahtzeeDisplay very	carefully	
and	think	about	when to	use	which	method
•You	should	not	use	YahtzeeMagicStub
in	your	final	submission!	Implement	your	
own	method	to	calculate	whether	a	set	of	
dice	satisfies	a	particular	category

Strategy	Advice

• Test	your	own	method	in	stages	
• Sketch	out	decomposition	tree
• Use	intermediate	milestones	e.g.	implementing	single-player	
game	first	is	easier
• Think	about	how	to	incorporate	YahtzeeDisplay and
YahtzeeMagicStub routines

