Final Review Session

Brahm Capoor

Logistics

December 10th, 8:30 - 11:30 AM
Last names A-G: 320-105

Last names H-0: 420-040

Last names P-Z: Bishop Auditorium

Come a little early!

BlueBook

BlueBook Battery48% § Time romaining 1:59 ala

Karel the Robot (20 points)

proge Each location that i part
the border should have one beeper on it and the border should be inset by one square from the outer walls of
world

Initial World State Final World State 51|

Download for Mac here

Download for Windows her b] frfeeeenet

Handout here

Make sure to have it installed and set up

before the exam

http://cs106a.stanford.edu/software/BlueBook-1.1.0.dmg
http://cs106a.stanford.edu/software/BlueBookSetup1.1.0.exe
http://web.stanford.edu/class/cs106a/handouts/30a-Taking-An-Exam-On-BlueBook.pdf

Concepts Practice

The better you understand how
everything fits together, the more
able you’ll be to do new problems!

Concepts Practice allows you to identify
common ways of solving
problems!

Practice

Where to find practice problems

Section handouts
Practice Final + Additional Practice Problems

CodeStepByStep

Textbook

Scattered throughout these slides

https://codestepbystep.com/

The Game Plan

Midterm Review
File Processing
Interactors
Collections
Classes

Server/Client

Midterm Greatest Hits

Check out the midterm review for the full collection
Skip to the next section of these slides

http://web.stanford.edu/class/cs106a/handouts/MidtermReviewSession.pdf

Primitive variables

X = 7; // declare and initialize a variable
X = 9; // change the value of x
X =X + 1; // increment (add 1 to) x. A.K.A. x++
X =X + 2; // add 2 to x. A.K.A. X += 2
X /= 2; // divide x by 2, and truncate result

d = 3.5;

isThisTrue = true;
isThisTrue = !isThisTrue; // flip isThisTrue

Class variables

thing = new Type(); // construct an object
x = thing.getSomething(); // call a getter method
thing.setSomething(someValue); // call a setter method

thing.doSomething(argumentl, argument2); // call another method

rect = new GRect(42, 42, 100, 100);
x = rect.getX();
thing.setlLocation(19, 97);
thing.move (20, 25);

Class variable types start with capital letters and primitive
variable types start with lowercase letters

Methods

private methodName (paraml, param2, ...) {
// sick code here
}

e A method header provides some guarantees about the method (what it returns, how
many parameters it takes)

e Parameters and return values generalize the methods we saw in Karel to allow the
use of variables

e [f a method returns something, that something needs to be stored in a variable

storedValue = methodName(/* params */);

Primitive variables passed into a method are passed by value

Graphics

rect = new (50, 50, 200, 200);

rect.setFilled(true);
rect.setColor(Color.BLUE);

oval = new (9, 0, getWidth(), getHeight());

oval.setFilled(false);
oval.setColor(Color.GREEN);

text = new (
add(text);

add(rect);
add(oval);

, 200, 10);

Things to remember

Coordinates are doubles

Coordinates are measured from the
top left of the screen

Coordinates of a shape are
coordinates of its top left corner

Coordinates of a label are
coordinates of its bottom left
corner

Remember to add objects to the
screen!

What’s a Character?

A char is a variable that represents a single letter, number or symbol.

Under the hood, it’s a number (as specified by ASCIl) ASCII TABLE

Decimal Hex C Decimal Hex Char |Decimal Hex Char | Decimal Hex Char
0 0 ,wuLu 32 20 [SPACE] |64 0 e 96 60
1 1 [START OF HEADING] 33 21 ! 65 41 A 97 61 a
2 2 [START OF TEXT) 34 2 66 2 B 98 62 b
3 3 (END OF TEXT] 35 23 # 67 3 99 63 ¢
CAD . a 4 [END OF TRANSMISSION] | 36 24 s 68 4 D 100 64 d
u p pe r‘A = A) 5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 e
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 f
7 7 [BELL) 39 27 71 47 G 103 67 g
8 8 [BACKSPACE) 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TAB) a1 29) 73 a9 1 105 69 i
10 A [LINE FEED) a2 24 ¢ 74 A) 106 6A
Upper‘B = () (upper‘caSeA + 1) . 11 B [VERTICAL TAB] 43 28+ 75 48 K 107 68 k
) 12 c [FORM FEED] a4 2, 76 ac L 108 6C |
13 D [CARRIAGE RETURN] 45 20 - 77 0 M 109 60 m
14 E [SHIFT OUT) 46 2 78 4E N 110 6E n
15 F [SHIFT IN] a7 2F | 79 4F O 111 6F o
16 10 [DATA LINK ESCAPE] 48 30 o 80 50 P 112 70 p
— €5 €4 . 17 11 [DEVICE CONTROL 1) 49 31 1 81 51 Q 113 71 q
num L et t ers = Z - ad + 1) 18 12 (DEVICE CONTROL 2] 50 32 2 82 52 R 114 2
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 S 115 73 s
20 14 [DEVICE CONTROL 4] 52 3 a 84 54 T 116 74t
21 15 (NEGATIVE ACKNOWLEDGE] | 53 33 5 85 55 U 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 6 86 56 v 118 76 v
23 17 (ENG OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 x
25 19 (END OF MEDIUM) 57 39 9 89 59 Y 121 79y
26 1A [SUBSTITUTE] 58 3A 90 5A Z 122 Az
27 1B [ESCAPE] 59 3B ; 91 B[123 7B {
28 1C [FILE SEPARATOR) 60 3¢ < 922 5\ 124 c |
29 1D [GROUP SEPARATOR] 61 3D = 93 5D 1 125 i
30 1E [RECORD SEPARATOR] 62 3E > 94 5E -~ 126 7E ~
31 IF [UNIT SEPARATOR) 63 3F 2 95 SF 127 7F [DEL]

What can we do with a Character?

static boolean isDigit(char ch)
Determines if the specified character is a digit.

static boolean isLetter (char ch)
Determines if the specified character is a letter.

static boolean isLetterOrDigit(char ch)
Determines if the specified character is a letter or a digit.

static boolean islLowerCase (char ch)
Determines if the specified character is a lowercase letter.

static boolean isUpperCase (char ch)
Determines if the specified character is an uppercase letter.

static boolean isWhitespace (char ch)
Determines if the specified character is whitespace (spaces and tabs).

static char tolLowerCase (char ch)
Converts ch to its lowercase equivalent, if any. If not, ch is returned unchanged.

static char toUpperCase (char ch)
Converts ch to its uppercase equivalent, if any. If not, ch is returned unchanged.

c = Db’; o
upper = Character.toUpperCase(c); Characters are primitives,
isDigit = Character.isDigit(c); so we have a helper class

with all these methods

What'’s a String?

A string is a variable that contains arbitrary text data
It consists of a series of chars, in order

It is surrounded by double quotes

What can we do with a string?

int length()
Returns the length of the string

char charAt(int index)
Returns the character at the specified index. Note: Strings indexed starting at 0.

String substring(int pl, int p2)
Returns the substring beginning at p1 and extending up to but not including p2

String substring(int pl)
Returns substring beginning at p1 and extending through end of string.

boolean equals(String s2)
Returns true if string s2 is equal to the receiver string. This is case sensitive.

int compareTo (String s2)
Returns integer whose sign indicates how strings compare in lexicographic order

int indexOf (char ch) or int indexOf (String s)
Returns index of first occurrence of the character or the string, or -1 if not found

String toLowerCase() or String toUpperCase ()
Returns a lowercase or uppercase version of the receiver string

A common pattern for String problems

str = “banter”;

result = “7; // make a result string
for (i=0; i< str.length(); i++) { // iterate through the original string
c = str.charAt(i); // get the i-th character
newChar = /* process c */; // process the i-th character
result = result + newChar; // reassign the result string to a new
} // literal

result and result + newChar are
different literals

Turning stuff into Strings

println(“B” + 8 + 4);

// prints “B84"

println(“B” + (8 + 4));

// prints “Bl12”

println(’'A’ + 5 + “ella”);

// prints “70ella (note: ‘A’ corresponds to 65)"”
println((char) (‘A’ + 5) + “ella”);

// prints “Fella”

File Processing

try {
SC = new (new (filename));

while (sc.hasNextLine()) {
line = sc.nextlLine();
println(“Just read: ” + line);
}
sc.close();
} catch (ex) {
throw new (ex):

}

try {
SC = new (new (filename));

while (sc.hasNextLine()) {

line = sc.nextLine(); { [Can only give you the next line inafile}

println(“Just read: ” + line);

}

sc.close();
} catch (ex) {
throw new (ex):

}

try {

while (sc.hasNextLine()) {
line = sc.nextlLine();

SC = new (new (filename));
[Try living dangerously

println(“Just read: ” + line);

}

sc.close();

} catch (ex) { _ [Life insurance

throw new (ex):
}

public void printFile() {
try {
SC = new (new (“file.txt”));
while (sc.hasNextlLine()) {
line = sc.nextlLine();
println(“Just read: ” + line.toUpperCase());
}
sc.close();
} catch (ex) {
throw new (ex):

}

file.txt

Spaceis limited
In a haiku, so it's hard
To finish what you

file.txt

. Spaceis limited
new (new (“file.txt”)); In a haiku, so it's hard
To finish what you

SC

file.txt

mm . W) Space is limited
: In a haiku, soit's hard
while (sc.hasNextLine()) { To finish what you

file.txt

Spaceis limited
mmmm)' |n a haiku, so it's hard

To finish what you
sc.nextlLine();

line

println(“Just read:

»

+ line.toUppercCase());

just read: SPACE IS LIMITED

file.txt

mmmm)' |n a haiku, so it's hard
To finish what you

file.txt

. _ mm . Inahaiku, soit's hard
while (sc.hasNextLine()) { To finish what you

just read: SPACE IS LIMITED

file.txt

In a haiku, so it's hard
mmm) To finish what you

line = sc.nextlLine();

just read: SPACE IS LIMITED

file.txt

mmm) To finish what you

»

println(“Just read: + line.toUpperCase());

just read: SPACE IS LIMITED
just read: IN A HAIKU, SO IT’S HARD

file.txt

while (sc.hasNextLine()) { mm .- W) To finish what you

just read: SPACE IS LIMITED
just read: IN A HAIKU, SO IT’S HARD

file.txt

To finish what you

line

sc.nextLine();)

just read: SPACE IS LIMITED
just read: IN A HAIKU, SO IT’S HARD

file.txt

To finish what you

)

»

println(“Just read: + line.toUpperCase());

just read: SPACE IS LIMITED
just read: IN A HAIKU, SO IT’S HARD
just read: TO FINISH WHAT YOU

file.txt

while (sc.hasNextLine()) { To finish what you

just read: SPACE IS LIMITED
just read: IN A HAIKU, SO IT’S HARD
just read: TO FINISH WHAT YOU

file.txt

while (sc.hasNextLine()) { To finish what you

B o W)

just read: SPACE IS LIMITED
just read: IN A HAIKU, SO IT’S HARD
just read: TO FINISH WHAT YOU

file.txt

Spaceis limited
In a haiku, so it's hard
To finish what you

sc.close();

just read: SPACE IS LIMITED
just read: IN A HAIKU, SO IT’S HARD
just read: TO FINISH WHAT YOU

A practice problem, courtesy of Nick Troccoli

Skip to next section

* Let’s say we’r$ %iven a guest list for a party. The guest list is
0

formatted as follows:
| Nick - 2
> Hannah - 3
1 Isaac - 5
. Austin - 5
5 George - 6

* Specifically, each line has the name of a friend, and how
many people they are bringing. Print out the friend
bringing the most people.

maxName = “;
maxGuests = 0;

try {
SC = new (new File(“guestlList.txt”));

while (sc.hasNextLine()) {
line = sc.nextLine();
parts = line.split(”“ 7);
name = parts[@];
numGuests = .parselInt(parts[1]);
if (numGuests > maxGuests) {
maxGuests = numGuests;
maxName = name;

}
} catch (Ex) {

throw new (Ex);

}

Interactors

A problem

Write a program that allows a user to type in a filename in a text field
and then upon pressing a button print every line of the file.

® You can assume the file exists
e The file may be any number of lines long
e You may not use any data structures

® @ LineReader

This is the first line
This is the second line

The line before this one was a blank line

Filename: textfile.txt

Print lines

public void init() {
label = new ("Filename: ");
add(label, SOUTH);

First, add the interactors in init()

private tf;

public void init() {
label = new ("Filename: ");
add(label, SOUTH);

tf = new (29);

JTextFields are always instance
variables

private tf;

public void init() {
label = new ("Filename: ");
add(label, SOUTH);

tf = new (29);
tf.setActionCommand("Set File");
tf.addActionListener(this);
add(tf, SOUTH);

We always set the action command and add
action listeners to text fields

private tf;

public void init() {
label = new ("Filename: ");
add(label, SOUTH);

tf = new (29);
tf.setActionCommand("Set File");
tf.addActionListener(this);
add(tf, SOUTH);

button = new ("Print lines");
add(button, SOUTH);

Interactors get added to the screen in the
order that we define them

private tf;

public void init() {
label = new ("Filename: ");
add(label, SOUTH);

tf = new (29);
tf.setActionCommand("Set File");
tf.addActionListener(this);
add(tf, SOUTH);

button = new ("Print lines");
add(button, SOUTH);

addActionListeners();

Remember to add ActionListenersto
your program!

public void actionPerformed(Actiontvent e) {
String cmd = e.getActionCommand();

All programs with Action Listeners need an
actionPerformed method

private String filename;

public void actionPerformed(Actiontvent e) {
String cmd = e.getActionCommand();
if (emd.equals("Set File")) {
filename = tf.getText();

}

We go through each of the possible action
commands

private String filename;

public void actionPerformed(Actiontvent e) {
String cmd = e.getActionCommand();
if (emd.equals("Set File")) {
filename = tf.getText();

}

if (emd.equals("Print lines")) {
printFile()

}

We call the printFile method defined in
the last section

private tf;
private String filename;

public void init() { public void actionPerformed(ActionEvent e) {
label = new ("Filename: "); String cmd = e.getActionCommand();
. b . n s L1}
add(label, SOUTH); if (emd.equals("Set File")) {
filename = tf.getText();

tf = new (29); } L))
tf.setActionCommand("Set File"); if (emd.equals("Print lines™)) {
tf.addActionListener(this); printFile()
add(tf, SOUTH); , ¥

button = new ("Print lines");

add(button, SOUTH);

addActionListeners();

Collections: ArrayLists, HashMaps and

dl'rays

Arrays

Fixed size
Store objects or primitives
No methods, only . 1length

Ordered

Arrays

Fixed size
Store objects or primitives
No methods, only . 1length

Ordered

ArraylLists

Variable size
Store only objects
Methods

Ordered

Arrays

Fixed size
Store objects or primitives
No methods, only . 1length

Ordered

ArraylLists

Variable size
Store only objects
Methods

Ordered

HashMaps

Variable size
Store only objects

Methods

Key-Value Associations

Arrays

Fixed size
Store objects or primitives
No methods, only . 1length

Ordered

ArrayLists

Variable size

Store only objects

Methods

Ordered
Wrapper classes
int Integer
double Double
boolean Boolean

char Character

—_

HashMaps

Variable size
Store only objects

Methods

Key-Value Associations

— Use these instead

—

4 N

Disclaimer: We'll get to matrices in a sec!
They’re super important and worth
understanding, but aren’t usually a natural
alternative to an Array, an ArrayList,
or a HashMap

- /

“What data structure should | use?’: A heuristic

How much

information do you
need to represent?

“What data structure should | use?’: A heuristic

How much

information do you
need to represent?

one or two
values

You (probably)
don’t need a
collection

“What data structure should | use?’: A heuristic

more than

that, or it — :
could change Does this information

. . have a natural order,
information do you o
or are you associating

>
S e A it with something else?

How much

one or two associating with
values something else

You (probably)

don’t need a
collection

“What data structure should | use?’: A heuristic

more than
that, or it — - ,
How much could change Does this information It's ordered .
e e |:> have a natural order, :> Do you know how many pieces of
or are you associating information you’re representing?

need to represent?

it with something else?

one or two associating with
values ﬁ something else ﬁm’ ﬁves

You (probably)

don’t need a
collection

HashMap ArraylList

“What data structure should | use?’: A heuristic

more than
that, or it — - ,
How much could change Does this information It's ordered .
e e |:> have a natural order, :> Do you know how many pieces of
or are you associating information you’re representing?

>
S e A it with something else?

one or two associating with
values ﬁ something else ﬁm’ ﬁves

Using an array would be
annoying

You (probably)

don’t need a
collection

“What data structure should | use?’: A heuristic

more than
that, or it — - ,
How much could change Does this information It's ordered .
e e |:> have a natural order, :> Do you know how many pieces of
or are you associating information you’re representing?

need to represent?

it with something else?

one or two associating with
values ﬁ something else ﬁm’ ﬁves

Using an ArrayList Using_an array would be
would be annoying annoying

You (probably)

don’t need a
collection

HashMap ArraylList

(be more careful about
deciding this)

A problem:

Suppose we have a bunch of Stanford Students who want to go to a Masquerade Ball, and a bunch of
carriages of variable size that can take them there. How can we assign the students to these carriages?

< > students = // {“Brahm”, “Kate”, “Zach”, “Jade”, “Mellany”, “Andrew”}
< > capacities = // {1, 3, 2}
printAssignments(students, capacities);

outputs:

Brahm is in carriage 0, which has Brahm

Kate is in carriage 1, which has Kate, Zach, Jade
Zach is in carriage 1, which has Kate, Zach, Jade
Jade is in carriage 1, which has Kate, Zach, Jade
Mellany is in carriage 2, which has Mellany, Andrew
Andrew is in carriage 2, which has Mellany, Andrew

A problem: The Stanford Carriage Pact

Suppose we have a bunch of Stanford Students who want to go to a Masquerade Ball, and a bunch of
carriages of variable size that can take them there. How can we assign the students to these carriages?

< > students = // {“Brahm”, “Kate”, “Zach”, “Jade”, “Mellany”, “Andrew”}
< > capacities = // {1, 3, 2}
printAssignments(students, capacities);

outputs:

Brahm is in carriage 0, which has Brahm

Kate is in carriage 1, which has Kate, Zach, Jade
Zach is in carriage 1, which has Kate, Zach, Jade
Jade is in carriage 1, which has Kate, Zach, Jade
Mellany is in carriage 2, which has Mellany, Andrew
Andrew is in carriage 2, which has Mellany, Andrew

A problem: The Stanford Carriage Pact =(»=) (="v")=

Suppose we have a bunch of Stanford Students who want to go to a Masquerade Ball, and a bunch of
carriages of variable size that can take them there. How can we assign the students to these carriages?

< > students = // {“Brahm”, “Kate”, “Zach”, “Jade”, “Mellany”, “Andrew”}
< > capacities = // {1, 3, 2}
printAssignments(students, capacities);

outputs:

Brahm is in carriage 0, which has Brahm

Kate is in carriage 1, which has Kate, Zach, Jade
Zach is in carriage 1, which has Kate, Zach, Jade
Jade is in carriage 1, which has Kate, Zach, Jade
Mellany is in carriage 2, which has Mellany, Andrew
Andrew is in carriage 2, which has Mellany, Andrew

Questions | would ask myself about this problem

What information do | need to store?

Questions | would ask myself about this problem

What information do | need to store?

Which carriage each student is in, and which students are in each carriage

Questions | would ask myself about this problem

What information do | need to store?
Which carriage each student is in, and which students are in each carriage

What types are these relationships between?

Questions | would ask myself about this problem

What information do | need to store?
Which carriage each student is in, and which students are in each carriage
What types are these relationships between?

String => int, and int => List of students

Questions | would ask myself about this problem

What information do | need to store?

Which carriage each student is in, and which students are in each carriage
What types are these relationships between?

String => int, and int => List of students

What data structures are hest for these relationships?

Questions | would ask myself about this problem

What information do | need to store?

Which carriage each student is in, and which students are in each carriage
What types are these relationships between?

String => int, and int => List of students
What data structures are hest for these relationships?

HashMap<String, Integer> andArraylList<ArraylList<String>>

Questions | would ask myself about this problem

What information do | need to store?
Which carriage each student is in, and which students are in each carriage

What types are these relationships between?

. T You could also use String[], but the
St””g => ’”t’ and int => List of students fact that the carriages are of different
sizes feels a /ittle annoying
What data structures are hest for these relationships? 1

HashMap<String, Integer> andArraylList<ArraylList<String>>

private void printAssignments(< > students, < > capacities) {
< , > studentsToCarriages = new < , >();
< < >> carriages = new < < >>();

Start by making those data
structures

private void printAssignments(< > students, < > capacities) {

< , > studentsToCarriages = new < , >();
< < >> carriages = new < < >>();
currCarriageldx = 0;
for (int 1 = 9; 1 < students.size(); i++) {

currStudent = students.get(i);
studentsToCarriages.put(currStudent, currCarriageldx);

Optimize for what’s easy - let’s

} assume that
currCarriageIdx is always
correct

private void printAssignments(< > students, < > capacities) {
< , > studentsToCarriages = new < , >();
< < >> carriages = new < < >>();

currCarriageldx = 0;

for (int 1 = 9; 1 < students.size(); i++) {
currStudent = students.get(i);
studentsToCarriages.put(currStudent, currCarriageldx);

if (/* current carriage size */ == capacities.get(currCarriageIdx)) {
// add current carriage to carriages list
// make a new current carriage

currCarriageIdx++;

} Make sure that
} currCarriageIdx isalways
correct

private void printAssignments(< > students, < > capacities) {

< , > studentsToCarriages = new < , >();
< < >> carriages = new < < >>();
< > currentCarriage = new < >();
currCarriageldx = 0;
for (int 1 = 9; 1 < students.size(); i++) {

currStudent = students.get(i);
studentsToCarriages.put(currStudent, currCarriageldx);
currentCarriage.add(currStudent);
if (currentCarriage.size() == capacities.get(currCarriageIdx)) {
carriages.add(currentCarriage);
// make a new current carriage
currCarriageIdx++;

} Use an ArrayList to represent
the currentCarriage

private void printAssignments(< > students, < > capacities) {

< , > studentsToCarriages = new < , >();
< < >> carriages = new < < >>();
< > currentCarriage = new < >();
currCarriageldx = 0;
for (int 1 = 9; 1 < students.size(); i++) {

currStudent = students.get(i);
studentsToCarriages.put(currStudent, currCarriageldx);
currentCarriage.add(currStudent);

if (currentCarriage.size() == capacities.get(currCarriageIdx)) {
carriages.add(currentCarriage);
currentCarriage = new < >();
currCarriageIdx++;
} o
} Use an ArrayList to represent

the currentCarriage

private void printAssignments(< > students, < > capacities)

< , > studentsToCarriages = new < , >();
< < >> carriages = new < < >>();
< > currentCarriage = new < >();
currCarriageldx = 0;
for (int 1 = 9; 1 < students.size(); i++) {

currStudent = students.get(i);
studentsToCarriages.put(currStudent, currCarriageldx);
currentCarriage.add(currStudent);

if (currentCarriage.size() == capacities.get(currCarriageIdx)) {
carriages.add(currentCarriage);
currentCarriage = new < >();
currCarriageIdx++;
}
} Output!
for (int 1 = 9; 1 < students.size(); i++) {

currStudent = students.get(i);

int carriage = studentsToCarriages.get(currStudent);
< > studentsInCarriage = carriages.get(carriage);
println(currStudent + carriage + studentsInCarriage);

private void printAssignments(< > students, < > capacities)

< , > studentsToCarriages = new < , >();
< < >> carriages = new < < >>();
< > currentCarriage = new < >();
currCarriageldx = 0;
for (int 1 = 9; 1 < students.size(); i++) {

currStudent = students.get(i);
studentsToCarriages.put(currStudent, currCarriageldx);
currentCarriage.add(currStudent);

if (currentCarriage.size() == capacities.get(currCarriageIdx)) {
carriages.add(currentCarriage);
currentCarriage = new < >();
currCarriageIdx++;
}
}
for (int i = 0; i < students.size(); i++) {
currStudent = students.get(i);
int carriage = studentsToCarriages.get(currStudent);
< > studentsInCarriage = carriages.get(carriage);
println(currStudent + carriage + studentsInCarriage);
}

