
Final Review Session

Brahm Capoor

Logistics

December 10th, 8:30 - 11:30 AM

Last names A-G: 320-105

Last names H-O: 420-040

Last names P-Z: Bishop Auditorium

Come a little early!

BlueBook

Download for Mac here

Download for Windows here

Handout here

Make sure to have it installed and set up
before the exam

http://cs106a.stanford.edu/software/BlueBook-1.1.0.dmg
http://cs106a.stanford.edu/software/BlueBookSetup1.1.0.exe
http://web.stanford.edu/class/cs106a/handouts/30a-Taking-An-Exam-On-BlueBook.pdf

Concepts Practice

Concepts

PracticeThe better you understand how
everything fits together, the more
able you’ll be to do new problems!

Concepts

Practice

Practice allows you to identify
common ways of solving
problems!

Where to find practice problems

Section handouts

Practice Final + Additional Practice Problems

CodeStepByStep

Textbook

Scattered throughout these slides

https://codestepbystep.com/

The Game Plan

Midterm Review

File Processing

Interactors

Collections

Classes

Server/Client

Midterm Greatest Hits

Check out the midterm review for the full collection
Skip to the next section of these slides

http://web.stanford.edu/class/cs106a/handouts/MidtermReviewSession.pdf

Primitive variables
int x = 7; // declare and initialize a variable
x = 9; // change the value of x
x = x + 1; // increment (add 1 to) x. A.K.A. x++
x = x + 2; // add 2 to x. A.K.A. x += 2
x /= 2; // divide x by 2, and truncate result

double d = 3.5;

boolean isThisTrue = true;
isThisTrue = !isThisTrue; // flip isThisTrue

Class variables
Type thing = new Type(); // construct an object
type_1 x = thing.getSomething(); // call a getter method
thing.setSomething(someValue); // call a setter method
thing.doSomething(argument1, argument2); // call another method

GRect rect = new GRect(42, 42, 100, 100);
double x = rect.getX();
thing.setLocation(19, 97);
thing.move(20, 25);

Class variable types start with capital letters and primitive
variable types start with lowercase letters

Methods
private returnType methodName(type param1, type param2, …) {

// sick code here
}

● A method header provides some guarantees about the method (what it returns, how
many parameters it takes)

● Parameters and return values generalize the methods we saw in Karel to allow the
use of variables

● If a method returns something, that something needs to be stored in a variable

returnType storedValue = methodName(/* params */);

● Primitive variables passed into a method are passed by value

Graphics
GRect rect = new GRect(50, 50, 200, 200);
rect.setFilled(true);
rect.setColor(Color.BLUE);

GOval oval = new GOval(0, 0, getWidth(), getHeight());
oval.setFilled(false);
oval.setColor(Color.GREEN);

GLabel text = new GLabel(“banter”, 200, 10);

add(text);
add(rect);
add(oval);

Things to remember

● Coordinates are doubles

● Coordinates are measured from the
top left of the screen

● Coordinates of a shape are
coordinates of its top left corner

● Coordinates of a label are
coordinates of its bottom left
corner

● Remember to add objects to the
screen!

What’s a Character?

A char is a variable that represents a single letter, number or symbol.

Under the hood, it’s a number (as specified by ASCII)

char upperA = ‘A’;

char upperB = (char)(uppercaseA + 1);

int numLetters = ‘z’ - ‘a’ + 1;

What can we do with a Character?

char c = ‘b’;
char upper = Character.toUpperCase(c);
boolean isDigit = Character.isDigit(c);

Characters are primitives,
so we have a helper class
with all these methods

What’s a String?

A String is a variable that contains arbitrary text data

It consists of a series of chars, in order

It is surrounded by double quotes

What can we do with a string?

A common pattern for String problems

String str = “banter”;
String result = “”; // make a result string
for (int i = 0; i < str.length(); i++) { // iterate through the original string

char c = str.charAt(i); // get the i-th character
char newChar = /* process c */; // process the i-th character
result = result + newChar; // reassign the result string to a new

} // literal

result and result + newChar are
different literals

Turning stuff into Strings

File Processing

try {
Scanner sc = new Scanner(new File(filename));
while (sc.hasNextLine()) {

String line = sc.nextLine();
println(“Just read: ” + line);

}
sc.close();

} catch (IOException ex) {
throw new ErrorException(ex):

}

try {
Scanner sc = new Scanner(new File(filename));
while (sc.hasNextLine()) {

String line = sc.nextLine();
println(“Just read: ” + line);

}
sc.close();

} catch (IOException ex) {
throw new ErrorException(ex):

}

Can only give you the next line in a file

try {
Scanner sc = new Scanner(new File(filename));
while (sc.hasNextLine()) {

String line = sc.nextLine();
println(“Just read: ” + line);

}
sc.close();

} catch (IOException ex) {
throw new ErrorException(ex):

}

Try living dangerously

Life insurance

public void printFile() {
try {

Scanner sc = new Scanner(new File(“file.txt”));
while (sc.hasNextLine()) {

String line = sc.nextLine();
println(“Just read: ” + line.toUpperCase());

}
sc.close();

} catch (IOException ex) {
throw new ErrorException(ex):

}
}

file.txt
——————————————————
Space is limited
In a haiku, so it's hard
To finish what you

public void printFile() {
try {

Scanner sc = new Scanner(new File(“file.txt”));
while (sc.hasNextLine()) {

String line = sc.nextLine();
println(“Just read: ” + line.toUpperCase());

}
sc.close();

} catch (IOException ex) {
throw new ErrorException(ex):

}
}

file.txt
——————————————————
Space is limited
In a haiku, so it's hard
To finish what you

public void printFile() {
try {

Scanner sc = new Scanner(new File(“file.txt”));
while (sc.hasNextLine()) {

String line = sc.nextLine();
println(“Just read: ” + line.toUpperCase());

}
sc.close();

} catch (IOException ex) {
throw new ErrorException(ex):

}
}

file.txt
——————————————————
Space is limited
In a haiku, so it's hard
To finish what you

public void printFile() {
try {

Scanner sc = new Scanner(new File(“file.txt”));
while (sc.hasNextLine()) {

String line = sc.nextLine();
println(“Just read: ” + line.toUpperCase());

}
sc.close();

} catch (IOException ex) {
throw new ErrorException(ex):

}
}

file.txt
——————————————————
Space is limited
In a haiku, so it's hard
To finish what you

public void printFile() {
try {

Scanner sc = new Scanner(new File(“file.txt”));
while (sc.hasNextLine()) {

String line = sc.nextLine();
println(“Just read: ” + line.toUpperCase());

}
sc.close();

} catch (IOException ex) {
throw new ErrorException(ex):

}
}

just read: SPACE IS LIMITED

file.txt
——————————————————
Space is limited
In a haiku, so it's hard
To finish what you

public void printFile() {
try {

Scanner sc = new Scanner(new File(“file.txt”));
while (sc.hasNextLine()) {

String line = sc.nextLine();
println(“Just read: ” + line.toUpperCase());

}
sc.close();

} catch (IOException ex) {
throw new ErrorException(ex):

}
}

just read: SPACE IS LIMITED

file.txt
——————————————————
Space is limited
In a haiku, so it's hard
To finish what you

public void printFile() {
try {

Scanner sc = new Scanner(new File(“file.txt”));
while (sc.hasNextLine()) {

String line = sc.nextLine();
println(“Just read: ” + line.toUpperCase());

}
sc.close();

} catch (IOException ex) {
throw new ErrorException(ex):

}
}

just read: SPACE IS LIMITED

file.txt
——————————————————
Space is limited
In a haiku, so it's hard
To finish what you

public void printFile() {
try {

Scanner sc = new Scanner(new File(“file.txt”));
while (sc.hasNextLine()) {

String line = sc.nextLine();
println(“Just read: ” + line.toUpperCase());

}
sc.close();

} catch (IOException ex) {
throw new ErrorException(ex):

}
}

just read: SPACE IS LIMITED
just read: IN A HAIKU, SO IT’S HARD

file.txt
——————————————————
Space is limited
In a haiku, so it's hard
To finish what you

public void printFile() {
try {

Scanner sc = new Scanner(new File(“file.txt”));
while (sc.hasNextLine()) {

String line = sc.nextLine();
println(“Just read: ” + line.toUpperCase());

}
sc.close();

} catch (IOException ex) {
throw new ErrorException(ex):

}
}

just read: SPACE IS LIMITED
just read: IN A HAIKU, SO IT’S HARD

file.txt
——————————————————
Space is limited
In a haiku, so it's hard
To finish what you

public void printFile() {
try {

Scanner sc = new Scanner(new File(“file.txt”));
while (sc.hasNextLine()) {

String line = sc.nextLine();
println(“Just read: ” + line.toUpperCase());

}
sc.close();

} catch (IOException ex) {
throw new ErrorException(ex):

}
}

just read: SPACE IS LIMITED
just read: IN A HAIKU, SO IT’S HARD

file.txt
——————————————————
Space is limited
In a haiku, so it's hard
To finish what you

public void printFile() {
try {

Scanner sc = new Scanner(new File(“file.txt”));
while (sc.hasNextLine()) {

String line = sc.nextLine();
println(“Just read: ” + line.toUpperCase());

}
sc.close();

} catch (IOException ex) {
throw new ErrorException(ex):

}
}

just read: SPACE IS LIMITED
just read: IN A HAIKU, SO IT’S HARD
just read: TO FINISH WHAT YOU

file.txt
——————————————————
Space is limited
In a haiku, so it's hard
To finish what you

public void printFile() {
try {

Scanner sc = new Scanner(new File(“file.txt”));
while (sc.hasNextLine()) {

String line = sc.nextLine();
println(“Just read: ” + line.toUpperCase());

}
sc.close();

} catch (IOException ex) {
throw new ErrorException(ex):

}
}

just read: SPACE IS LIMITED
just read: IN A HAIKU, SO IT’S HARD
just read: TO FINISH WHAT YOU

file.txt
——————————————————
Space is limited
In a haiku, so it's hard
To finish what you

public void printFile() {
try {

Scanner sc = new Scanner(new File(“file.txt”));
while (sc.hasNextLine()) {

String line = sc.nextLine();
println(“Just read: ” + line.toUpperCase());

}
sc.close();

} catch (IOException ex) {
throw new ErrorException(ex):

}
}

just read: SPACE IS LIMITED
just read: IN A HAIKU, SO IT’S HARD
just read: TO FINISH WHAT YOU

file.txt
——————————————————
Space is limited
In a haiku, so it's hard
To finish what you

public void printFile() {
try {

Scanner sc = new Scanner(new File(“file.txt”));
while (sc.hasNextLine()) {

String line = sc.nextLine();
println(“Just read: ” + line.toUpperCase());

}
sc.close();

} catch (IOException ex) {
throw new ErrorException(ex):

}
}

just read: SPACE IS LIMITED
just read: IN A HAIKU, SO IT’S HARD
just read: TO FINISH WHAT YOU

file.txt
——————————————————
Space is limited
In a haiku, so it's hard
To finish what you

A practice problem, courtesy of Nick Troccoli

Skip to next section

String maxName = “”;
int maxGuests = 0;

try {
Scanner sc = new Scanner(new File(“guestList.txt”));
while (sc.hasNextLine()) {

String line = sc.nextLine();
String[] parts = line.split(“ ”);
String name = parts[0];
int numGuests = Integer.parseInt(parts[1]);
if (numGuests > maxGuests) {

maxGuests = numGuests;
maxName = name;

}
}

} catch (IOException Ex) {
throw new ErrorException(Ex);

}

Interactors

A problem
Write a program that allows a user to type in a filename in a text field
and then upon pressing a button print every line of the file.

● You can assume the file exists
● The file may be any number of lines long
● You may not use any data structures

public void init() {
JLabel label = new JLabel("Filename: ");
add(label, SOUTH);

tf = new JTextField(20);
tf.setActionCommand("Set File");
tf.addActionListener(this);
add(tf, SOUTH);

JButton button = new JButton("Print lines");
add(button, SOUTH);

addActionListeners();
}

First, add the interactors in init()

private JTextField tf;

public void init() {
JLabel label = new JLabel("Filename: ");
add(label, SOUTH);

tf = new JTextField(20);
tf.setActionCommand("Set File");
tf.addActionListener(this);
add(tf, SOUTH);

JButton button = new JButton("Print lines");
add(button, SOUTH);

addActionListeners();
}

JTextFields are always instance
variables

private JTextField tf;

public void init() {
JLabel label = new JLabel("Filename: ");
add(label, SOUTH);

tf = new JTextField(20);
tf.setActionCommand("Set File");
tf.addActionListener(this);
add(tf, SOUTH);

JButton button = new JButton("Print lines");
add(button, SOUTH);

addActionListeners();
}

We always set the action command and add
action listeners to text fields

private JTextField tf;

public void init() {
JLabel label = new JLabel("Filename: ");
add(label, SOUTH);

tf = new JTextField(20);
tf.setActionCommand("Set File");
tf.addActionListener(this);
add(tf, SOUTH);

JButton button = new JButton("Print lines");
add(button, SOUTH);

addActionListeners();
addActionListeners();

}
Interactors get added to the screen in the

order that we define them

private JTextField tf;

public void init() {
JLabel label = new JLabel("Filename: ");
add(label, SOUTH);

tf = new JTextField(20);
tf.setActionCommand("Set File");
tf.addActionListener(this);
add(tf, SOUTH);

JButton button = new JButton("Print lines");
add(button, SOUTH);

addActionListeners();();
addActionListeners();

}
Remember to add ActionListeners to

your program!

private JTextField tf;
private String filename;

public void init() {
JLabel label = new JLabel("Filename: ");
add(label, SOUTH);

tf = new JTextField(20);
tf.setActionCommand("Set File");
tf.addActionListener(this);
add(tf, SOUTH);

JButton button = new JButton("Print lines");
add(button, SOUTH);

addActionListeners();
}

public void actionPerformed(ActionEvent e) {
String cmd = e.getActionCommand();
if (cmd.equals("Set File")) {

filename = tf.getText();
}
if (cmd.equals("Print lines")) {

printFile()
}

}

All programs with Action Listeners need an
actionPerformed method

private JTextField tf;
private String filename;

public void init() {
JLabel label = new JLabel("Filename: ");
add(label, SOUTH);

tf = new JTextField(20);
tf.setActionCommand("Set File");
tf.addActionListener(this);
add(tf, SOUTH);

JButton button = new JButton("Print lines");
add(button, SOUTH);

addActionListeners();
}

public void actionPerformed(ActionEvent e) {
String cmd = e.getActionCommand();
if (cmd.equals("Set File")) {

filename = tf.getText();
}
if (cmd.equals("Print lines")) {

printFile()
}

}

We go through each of the possible action
commands

private JTextField tf;
private String filename;

public void init() {
JLabel label = new JLabel("Filename: ");
add(label, SOUTH);

tf = new JTextField(20);
tf.setActionCommand("Set File");
tf.addActionListener(this);
add(tf, SOUTH);

JButton button = new JButton("Print lines");
add(button, SOUTH);

addActionListeners();
}

public void actionPerformed(ActionEvent e) {
String cmd = e.getActionCommand();
if (cmd.equals("Set File")) {

filename = tf.getText();
}
if (cmd.equals("Print lines")) {

printFile()
}

}

We call the printFile method defined in
the last section

private JTextField tf;
private String filename;

public void init() {
JLabel label = new JLabel("Filename: ");
add(label, SOUTH);

tf = new JTextField(20);
tf.setActionCommand("Set File");
tf.addActionListener(this);
add(tf, SOUTH);

JButton button = new JButton("Print lines");
add(button, SOUTH);

addActionListeners();();
addActionListeners();

}

public void actionPerformed(ActionEvent e) {
String cmd = e.getActionCommand();
if (cmd.equals("Set File")) {

filename = tf.getText();
}
if (cmd.equals("Print lines")) {

printFile()
}

}

Collections: ArrayLists, HashMaps and
arrays

Arrays
Fixed size

Store objects or primitives

No methods, only .length

Ordered

Arrays
Fixed size

Store objects or primitives

No methods, only .length

Ordered

ArrayLists
Variable size

Store only objects

Methods

Ordered

Arrays
Fixed size

Store objects or primitives

No methods, only .length

Ordered

ArrayLists
Variable size

Store only objects

Methods

Ordered

HashMaps
Variable size

Store only objects

Methods

Key-Value Associations

Arrays
Fixed size

Store objects or primitives

No methods, only .length

Ordered

ArrayLists
Variable size

Store only objects

Methods

Ordered

HashMaps
Variable size

Store only objects

Methods

Key-Value Associations

Wrapper classes

int Integer
double Double
boolean Boolean
char Character

Use these instead

Arrays
Fixed size

Store objects or primitives

No methods, only .length

Ordered

ArrayLists
Variable size

Store only objects

Methods

Ordered

HashMaps
Variable size

Store only objects

Methods

Key-Value Associations

Wrapper classes

int Integer
double Double
boolean Boolean
char Character

Use these instead

Disclaimer: We’ll get to matrices in a sec!
They’re super important and worth
understanding, but aren’t usually a natural
alternative to an Array, an ArrayList,
or a HashMap

“What data structure should I use?”: A heuristic

How much
information do you
need to represent?

“What data structure should I use?”: A heuristic

How much
information do you
need to represent?

one or two
values

You (probably)
don’t need a

collection

“What data structure should I use?”: A heuristic

How much
information do you
need to represent?

one or two
values

You (probably)
don’t need a

collection

more than
that, or it

could change Does this information
have a natural order,

or are you associating
it with something else?

associating with
something else

HashMap

“What data structure should I use?”: A heuristic

How much
information do you
need to represent?

one or two
values

You (probably)
don’t need a

collection

more than
that, or it

could change Does this information
have a natural order,

or are you associating
it with something else?

associating with
something else

HashMap

Do you know how many pieces of
information you’re representing?

It’s ordered

No

ArrayList Array

Yes

“What data structure should I use?”: A heuristic

How much
information do you
need to represent?

one or two
values

You (probably)
don’t need a

collection

more than
that, or it

could change Does this information
have a natural order,

or are you associating
it with something else?

associating with
something else

HashMap

Do you know how many pieces of
information you’re representing?

It’s ordered

No

ArrayList Array

Yes

Using an array would be
annoying

“What data structure should I use?”: A heuristic

How much
information do you
need to represent?

one or two
values

You (probably)
don’t need a

collection

more than
that, or it

could change Does this information
have a natural order,

or are you associating
it with something else?

associating with
something else

HashMap

Do you know how many pieces of
information you’re representing?

It’s ordered

No

ArrayList Array

Yes

Using an array would be
annoying

Using an ArrayList
would be annoying

(be more careful about
deciding this)

A problem:
Suppose we have a bunch of Stanford Students who want to go to a Masquerade Ball, and a bunch of
carriages of variable size that can take them there. How can we assign the students to these carriages?

ArrayList<String> students = // {“Brahm”, “Kate”, “Zach”, “Jade”, “Mellany”, “Andrew”}
ArrayList<Integer> capacities = // {1, 3, 2}
printAssignments(students, capacities);

outputs:
Brahm is in carriage 0, which has Brahm
Kate is in carriage 1, which has Kate, Zach, Jade
Zach is in carriage 1, which has Kate, Zach, Jade
Jade is in carriage 1, which has Kate, Zach, Jade
Mellany is in carriage 2, which has Mellany, Andrew
Andrew is in carriage 2, which has Mellany, Andrew

A problem: The Stanford Carriage Pact
Suppose we have a bunch of Stanford Students who want to go to a Masquerade Ball, and a bunch of
carriages of variable size that can take them there. How can we assign the students to these carriages?

ArrayList<String> students = // {“Brahm”, “Kate”, “Zach”, “Jade”, “Mellany”, “Andrew”}
ArrayList<Integer> capacities = // {1, 3, 2}
printAssignments(students, capacities);

outputs:
Brahm is in carriage 0, which has Brahm
Kate is in carriage 1, which has Kate, Zach, Jade
Zach is in carriage 1, which has Kate, Zach, Jade
Jade is in carriage 1, which has Kate, Zach, Jade
Mellany is in carriage 2, which has Mellany, Andrew
Andrew is in carriage 2, which has Mellany, Andrew

A problem: The Stanford Carriage Pact ☜(ﾟヮﾟ☜) (☞ﾟヮﾟ)☞

Suppose we have a bunch of Stanford Students who want to go to a Masquerade Ball, and a bunch of
carriages of variable size that can take them there. How can we assign the students to these carriages?

ArrayList<String> students = // {“Brahm”, “Kate”, “Zach”, “Jade”, “Mellany”, “Andrew”}
ArrayList<Integer> capacities = // {1, 3, 2}
printAssignments(students, capacities);

outputs:
Brahm is in carriage 0, which has Brahm
Kate is in carriage 1, which has Kate, Zach, Jade
Zach is in carriage 1, which has Kate, Zach, Jade
Jade is in carriage 1, which has Kate, Zach, Jade
Mellany is in carriage 2, which has Mellany, Andrew
Andrew is in carriage 2, which has Mellany, Andrew

Questions I would ask myself about this problem

What information do I need to store?

Questions I would ask myself about this problem

What information do I need to store?

Which carriage each student is in, and which students are in each carriage

Questions I would ask myself about this problem

What information do I need to store?

Which carriage each student is in, and which students are in each carriage

What types are these relationships between?

Questions I would ask myself about this problem

What information do I need to store?

Which carriage each student is in, and which students are in each carriage

What types are these relationships between?

String => int, and int => List of students

Questions I would ask myself about this problem

What information do I need to store?

Which carriage each student is in, and which students are in each carriage

What types are these relationships between?

String => int, and int => List of students

What data structures are best for these relationships?

Questions I would ask myself about this problem

What information do I need to store?

Which carriage each student is in, and which students are in each carriage

What types are these relationships between?

String => int, and int => List of students

What data structures are best for these relationships?

HashMap<String, Integer> and ArrayList<ArrayList<String>>

Questions I would ask myself about this problem

What information do I need to store?

Which carriage each student is in, and which students are in each carriage

What types are these relationships between?

String => int, and int => List of students

What data structures are best for these relationships?

HashMap<String, Integer> and ArrayList<ArrayList<String>>

You could also use String[], but the
fact that the carriages are of different

sizes feels a little annoying

private void printAssignments(ArrayList<String> students, ArrayList<Integer> capacities) {
HashMap<String, Integer> studentsToCarriages = new HashMap<String, Integer>();
ArrayList<ArrayList<String>> carriages = new ArrayList<ArrayList<String>>();

ArrayList<String> currentCarriage = new ArrayList<String>();
int currCapacityIdx = 0;

for (int i = 0; i < students.size(); i++) {
String currStudent = students.get(i);
studentsToCarriages.put(currStudent, currCapacityIdx);
currentCarriage.add(currStudent);
if (currentCarriage.size() == capacities.get(currCapacityIdx)) {

carriages.add(currentCarriage);
currentCarriage = new ArrayList<String>();
currCapacityIdx++;

}
}

for (int i = 0; i < students.size(); i++) {
String currStudent = students.get(i);
int carriage = studentsToCarriages.get(currStudent);
ArrayList<String> studentsInCarriage = carriages.get(carriage);
println(currStudent + carriage + studentsInCarriage);

}
}

Start by making those data
structures

private void printAssignments(ArrayList<String> students, ArrayList<Integer> capacities) {
HashMap<String, Integer> studentsToCarriages = new HashMap<String, Integer>();
ArrayList<ArrayList<String>> carriages = new ArrayList<ArrayList<String>>();

ArrayList<String> currentCarriage = new ArrayList<String>();
int currCarriageIdx = 0;

for (int i = 0; i < students.size(); i++) {
String currStudent = students.get(i);;
studentsToCarriages.put(currStudent, currCarriageIdx);
currentCarriage.add(currStudent);
if (/* current carriage size */ == capacities.get(currCarriageIdx)) {

// add current carriage to carriages list
// make a new current carriage
currCarriageIdx++;

}
}

for (int i = 0; i < students.size(); i++) {
String currStudent = students.get(i);
int carriage = studentsToCarriages.get(currStudent);
ArrayList<String> studentsInCarriage = carriages.get(carriage);
println(currStudent + carriage + studentsInCarriage);

}
}

Optimize for what’s easy - let’s
assume that
currCarriageIdx is always
correct

private void printAssignments(ArrayList<String> students, ArrayList<Integer> capacities) {
HashMap<String, Integer> studentsToCarriages = new HashMap<String, Integer>();
ArrayList<ArrayList<String>> carriages = new ArrayList<ArrayList<String>>();

ArrayList<String> currentCarriage = new ArrayList<String>();
int currCarriageIdx = 0;

for (int i = 0; i < students.size(); i++) {
String currStudent = students.get(i);;
studentsToCarriages.put(currStudent, currCarriageIdx);
currentCarriage.add(currStudent);
if (/* current carriage size */ == capacities.get(currCarriageIdx)) {

// add current carriage to carriages list
// make a new current carriage
currCarriageIdx++;

}
}

for (int i = 0; i < students.size(); i++) {
String currStudent = students.get(i);
int carriage = studentsToCarriages.get(currStudent);
ArrayList<String> studentsInCarriage = carriages.get(carriage);
println(currStudent + carriage + studentsInCarriage);

}
}

Make sure that
currCarriageIdx is always
correct

private void printAssignments(ArrayList<String> students, ArrayList<Integer> capacities) {
HashMap<String, Integer> studentsToCarriages = new HashMap<String, Integer>();
ArrayList<ArrayList<String>> carriages = new ArrayList<ArrayList<String>>();

ArrayList<String> currentCarriage = new ArrayList<String>();
int currCarriageIdx = 0;

for (int i = 0; i < students.size(); i++) {
String currStudent = students.get(i);;
studentsToCarriages.put(currStudent, currCarriageIdx);
currentCarriage.add(currStudent);
if (currentCarriage.size() == capacities.get(currCarriageIdx)) {

carriages.add(currentCarriage);
// make a new current carriage
currCarriageIdx++;

}
}

for (int i = 0; i < students.size(); i++) {
String currStudent = students.get(i);
int carriage = studentsToCarriages.get(currStudent);
ArrayList<String> studentsInCarriage = carriages.get(carriage);
println(currStudent + carriage + studentsInCarriage);

}
}

Use an ArrayList to represent
the currentCarriage

private void printAssignments(ArrayList<String> students, ArrayList<Integer> capacities) {
HashMap<String, Integer> studentsToCarriages = new HashMap<String, Integer>();
ArrayList<ArrayList<String>> carriages = new ArrayList<ArrayList<String>>();

ArrayList<String> currentCarriage = new ArrayList<String>();
int currCarriageIdx = 0;

for (int i = 0; i < students.size(); i++) {
String currStudent = students.get(i);;
studentsToCarriages.put(currStudent, currCarriageIdx);
currentCarriage.add(currStudent);
if (currentCarriage.size() == capacities.get(currCarriageIdx)) {

carriages.add(currentCarriage);
currentCarriage = new ArrayList<String>();
currCarriageIdx++;

}
}

for (int i = 0; i < students.size(); i++) {
String currStudent = students.get(i);
int carriage = studentsToCarriages.get(currStudent);
ArrayList<String> studentsInCarriage = carriages.get(carriage);
println(currStudent + carriage + studentsInCarriage);

}
}

Use an ArrayList to represent
the currentCarriage

private void printAssignments(ArrayList<String> students, ArrayList<Integer> capacities) {
HashMap<String, Integer> studentsToCarriages = new HashMap<String, Integer>();
ArrayList<ArrayList<String>> carriages = new ArrayList<ArrayList<String>>();

ArrayList<String> currentCarriage = new ArrayList<String>();
int currCarriageIdx = 0;

for (int i = 0; i < students.size(); i++) {
String currStudent = students.get(i);
studentsToCarriages.put(currStudent, currCarriageIdx);
currentCarriage.add(currStudent);
if (currentCarriage.size() == capacities.get(currCarriageIdx)) {

carriages.add(currentCarriage);
currentCarriage = new ArrayList<String>();
currCarriageIdx++;

}
}

for (int i = 0; i < students.size(); i++) {
String currStudent = students.get(i);
int carriage = studentsToCarriages.get(currStudent);
ArrayList<String> studentsInCarriage = carriages.get(carriage);
println(currStudent + carriage + studentsInCarriage);

}
}

Output!

private void printAssignments(ArrayList<String> students, ArrayList<Integer> capacities) {
HashMap<String, Integer> studentsToCarriages = new HashMap<String, Integer>();
ArrayList<ArrayList<String>> carriages = new ArrayList<ArrayList<String>>();

ArrayList<String> currentCarriage = new ArrayList<String>();
int currCarriageIdx = 0;

for (int i = 0; i < students.size(); i++) {
String currStudent = students.get(i);
studentsToCarriages.put(currStudent, currCarriageIdx);
currentCarriage.add(currStudent);
if (currentCarriage.size() == capacities.get(currCarriageIdx)) {

carriages.add(currentCarriage);
currentCarriage = new ArrayList<String>();
currCarriageIdx++;

}
}

for (int i = 0; i < students.size(); i++) {
String currStudent = students.get(i);
int carriage = studentsToCarriages.get(currStudent);
ArrayList<String> studentsInCarriage = carriages.get(carriage);
println(currStudent + carriage + studentsInCarriage);

}
}

