
Final Review Session #2

Brahm Capoor

First, a quick review of last time

A problem: The Stanford Carriage Pact ☜(ﾟヮﾟ☜) (☞ﾟヮﾟ)☞

Suppose we have a bunch of Stanford Students who want to go to a Masquerade Ball, and a bunch of
carriages of variable size that can take them there. How can we assign the students to these carriages?

ArrayList<String> students = // {“Brahm”, “Kate”, “Zach”, “Jade”, “Mellany”, “Andrew”}
ArrayList<Integer> capacities = // {1, 3, 2}
printAssignments(students, capacities);

outputs:
Brahm is in carriage 0, which has Brahm
Kate is in carriage 1, which has Kate, Zach, Jade
Zach is in carriage 1, which has Kate, Zach, Jade
Jade is in carriage 1, which has Kate, Zach, Jade
Mellany is in carriage 2, which has Mellany, Andrew
Andrew is in carriage 2, which has Mellany, Andrew

private void printAssignments(ArrayList<String> students, ArrayList<Integer> capacities) {
HashMap<String, Integer> studentsToCarriages = new HashMap<String, Integer>();
ArrayList<ArrayList<String>> carriages = new ArrayList<ArrayList<String>>();

ArrayList<String> currentCarriage = new ArrayList<String>(); // represents current carriage
int currCarriageIdx = 0; // represents current carriage number

for (int i = 0; i < students.size(); i++) { // go through each student
String currStudent = students.get(i);
studentsToCarriages.put(currStudent, currCarriageIdx); // student goes in current carriage
currentCarriage.add(currStudent); // add the student to the carriage
if (currentCarriage.size() == capacities.get(currCarriageIdx)) { // carriage is full

carriages.add(currentCarriage); // carriages is the list of all the full carriages
currentCarriage = new ArrayList<String>(); // get a new carriage
currCarriageIdx++; // increment current carriage number

}
}

for (int i = 0; i < students.size(); i++) { // for each student, print which carriage they’re in
String currStudent = students.get(i);
int carriage = studentsToCarriages.get(currStudent);
ArrayList<String> studentsInCarriage = carriages.get(carriage);
println(currStudent + carriage + studentsInCarriage); // print all students in carriage

}
}

Matrices

int[][] matrix = new int[10][6];

Number of rows

Number of columns

42 15 100 5 6 7

12 7 132 255 14 13

31 45 65 42 3 5

89 7 93 23 86 62

64 3 38 32 79 50

161 80 27 82 81 84

228 106 107 103 109 221

140 110 227 144 105 101

27 64 125 4 9 16

25 36 49 64 81 100

int[][] matrix = new int[10][6];

int[][] matrix = new int[10][6]; 42 15 100 5 6 7

12 7 132 255 14 13

31 45 65 42 3 5

89 7 93 23 86 62

.

.

.

25 36 49 64 81 100

matrix

0

1

2

int[][] matrix = new int[10][6];
int n = matrix[2][3];

42 15 100 5 6 7

12 7 132 255 14 13

31 45 65 42 3 5

89 7 93 23 86 62

.

.

.

25 36 49 64 81 100

matrix

0

1

2

int[][] matrix = new int[10][6];
int n = matrix[2][3];

42 15 100 5 6 7

12 7 132 255 14 13

31 45 65 42 3 5

89 7 93 23 86 62

.

.

.

25 36 49 64 81 100

matrix

0

1

2

int[][] matrix = new int[10][6];
int n = matrix[2][3];

42 15 100 5 6 7

12 7 132 255 14 13

31 45 65 42 3 5

89 7 93 23 86 62

.

.

.

25 36 49 64 81 100

matrix

0

1

2

int[][] matrix = new int[10][6];
int n = matrix[2][3]; // 42

42 15 100 5 6 7

12 7 132 255 14 13

31 45 65 42 3 5

89 7 93 23 86 62

.

.

.

25 36 49 64 81 100

matrix

0

1

2

A common pattern in matrix problems
private int numRows(int[][] m) {

return m.length;
}

private int numCols(int[][] m) {
return m[0].length;

}

String[][] matrix = /* a matrix of arbitrary size */

for (int r = 0; r < numRows(matrix); r++) {
for (int c = 0; c < numCols(matrix); c++) {

String elem = matrix[r][c];
// process elem

}
}

A problem: Verifying a magic square
A magic square is an n x n grid containing integers whose rows, columns and diagonals all add
up to the same number. Write the following method:

private boolean isMagicSquare(int[][] grid)

that takes in a matrix of ints (which is a square of arbitrary size) and returns whether or not it is
a magic square.

8 11 14 1

13 2 7 12

3 16 9 6

10 5 4 15

private boolean isMagicSquare(int[][] grid) {
int total = rowSum(grid, 0);

for (int i = 1; i < grid.length; i++) {
if (total != rowSum(grid, i)) {

return false;
}

}

for (int i = 0; i < grid[0].length) {
if (total != colSum(grid, i)) {

return false;
}

}

if (total != mainDiagonalSum(grid) || total != secondDiagonalSum(grid)) {
return false;

}

return true;
}

private int rowSum(int[][] grid, int rowNum) {
int sum = 0;
for (int col = 0; col < grid[rowNum].length; col++) {

sum += grid[rowNum][col];
}
return sum;

}

private int colSum(int[][] grid, int rowNum) {
int sum = 0;
for (int row = 0; row < grid.length; row++) {

sum += grid[row][colNum];
}
return sum;

}

private int mainDiagonalSum(int[][] grid) {
int sum = 0;
for (int i = 0; i < grid.length; i++) {

sum += grid[i][i];
}
return sum;

}

private int secondDiagonalSum(int[][] grid) {
int sum = 0;
for (int i = 0; i < grid.length; i++) {

sum += grid[i][grid.length - 1 - i];
}
return sum;

}

Implementing Classes

public class ClassName {

// sick code here

}

I’m defining a thing called
Classname

public class Student {

// sick code here

}

public class Student {

// sick code here

}

Student.java Stanford.java

public void run() {
Student s1;
Student s2;
Student s3;
// more sick code here

}

Creating objects of type
Student

Instance variables

Defined as part of a class, but not within any particular method

public class Student {

private String studentName;
private int studentId;
private String email;
private int numUnits;
private boolean isInternational;

}

public void run() {

Student s1;
Student s2;
Student s3;

}

s1, s2 and s3 all have
their own independent
properties, encoded as

private instance variables

Initializing your instance variables in the constructor
public class Student {

/* instance variables go here */

public Student(String name, int id, String email,
int numUnits, boolean isInternational) {

studentName = name;
studentId = id;
this.email = email; // to disambiguate between variables
this.numUnits = numUnits;
this.isInternational = isInternational;

}
}

Now we can make students!
public Student(String name, int id, String email,

int numUnits, boolean isInternational) {...}

public void run() {

Student s1 = new Student(“Brahm”, 31415926, “brahm@stanford.edu”,
 180, true);

}

Student s1 = new Student(“Brahm”, 31415926, “brahm@stanford.edu”, 180, true);

Under the hood

Stack frame

s1

studentName “Brahm”
studentId 31415926
email “brahm@stanford.edu”
numUnits 180
isInternational true

A ‘reference’

public class Student {

public Student(int unitCount) {
numUnits = unitCount;

}

public int getUnits() {
return numUnits;

}

public void setUnits(int newUnits) {
numUnits = newUnits;

}

private int numUnits;

}

public void run() {

Student s1 = new Student(42);

}

Getters and Setters

public class Student {

public Student(int unitCount) {
numUnits = unitCount;

}

public int getUnits() {
return numUnits;

}

public void setUnits(int newUnits) {
numUnits = newUnits;

}

private int numUnits;

}

public void run() {

Student s1 = new Student(42);

println(“Curr:” + s1.getUnits());

}

Getters and Setters

public class Student {

public Student(int unitCount) {
numUnits = unitCount;

}

public int getUnits() {
return numUnits;

}

public void setUnits(int newUnits) {
numUnits = newUnits;

}

private int numUnits;

}

public void run() {

Student s1 = new Student(42);

println(“Curr:” + s1.getUnits());

s1.setUnits(60);

}

Getters and Setters

public class Student {

public Student(int unitCount) {
numUnits = unitCount;

}

public int getUnits() {
return numUnits;

}

public void setUnits(int newUnits) {
numUnits = newUnits;

}

private int numUnits;

}

Getter and Setter methods are public (exported) so we can
call them in other classes and programs

Getters and Setters

public class Student {

public Student(int unitCount) {
numUnits = unitCount;

}

public int getUnits() {
return numUnits;

}

public void setUnits(int newUnits) {
numUnits = newUnits;

}

private int numUnits;

}

Getter and Setter methods are public (exported) so we can
call them in other classes and programs

Define Getters and Setters whenever you want to grant a
client access to or control over an instance variable

Getters and Setters

Getters and Setters
public class Student {

public Student(int unitCount) {
numUnits = unitCount;

}

public int getUnits() {
return numUnits;

}

public void setUnits(int newUnits) {
numUnits = newUnits;

}

private int numUnits;

}

Getter and Setter methods are public (exported) so we can
call them in other classes and programs

Define Getters and Setters whenever you want to grant a
client access to or control over an instance variable

These methods are typically very short

Why stop there?

Now that we know how to use instance variables, we can do even cooler things

public boolean canGraduate() {
return numUnits >= 180;

}

public void dropClass (int classUnits) {
if (classUnits <= 5) {

numUnits -= classUnits;
}

}

Methods allow us to define behaviours for our
classes

Step #1: decide on instance variables

Step #2: Using those instance variables, write public methods

Step #2: Using those instance variables, write public methods

Step #2: Using those instance variables, write public methods

Step #3: Finish the constructor

Servers and Clients

The internet in 3 lines

The internet is a bunch of computers just yelling at each other

The internet in 3 lines

The internet is a bunch of computers just yelling at each other

The computers that yell first are clients, and the computers that yell back are servers

The internet in 3 lines

The internet is a bunch of computers just yelling at each other

The computers that yell first are clients, and the computers that yell back are servers

Every yell is made entirely of specially-formatted Strings

Brahm’s computer Facebook’s servers

Brahm’s computer Facebook’s servers

I need Brahm’s
profile picture

Brahm’s computer Facebook’s servers

I need Brahm’s
profile picture

from you

Brahm’s computer Facebook’s servers

Where did I put
that picture?

I need Brahm’s
profile picture

from you

Brahm’s computer Facebook’s servers

Here you go!

I need Brahm’s
profile picture

from you

Brahm’s computer Facebook’s servers

Here you go!

I need Brahm’s
profile picture

from you

Brahm’s computer Facebook’s servers

Here you go!

I need Brahm’s
profile picture

from youMe one week
ago

Here you go!

I need Brahm’s
profile picture

from you

“Here you go!”

“I need Brahm’s
profile picture

from you”

Request

Response

public class Request {

private String command;
private HashMap <String, String> params;

public Request(String command) { … } // constructor

public void addParam(String name, String val) { … }

public String getCommand() { … }

public String getParam(String name) { … }

}

/* It’s a string, but the contents of that String are up to
you. */

Request

made by the client

Response

by the server

private static String HOST = “http://localhost:8080”;

private void makeRequest(String username) {
try {

Request r = new Request(“getStatus”);
r.addParam(“username”, username);
return SimpleClient.makeRequest(HOST, r);

} catch (IOException e) {
return null;

}
}

public void run() {
String status = makeRequest(“brahmcapoor”);

}

public void requestMade(Request req) {
String cmd = req.getCommand();
if (cmd.equals(“getStatus”)) {

String username = req.getParam(“username”);
String status = “chillin’ like a villain”;
return status;

} // and so on...

Request

made by the client

Response

by the server

Studying & Exam Strategy

Studying:

Optimize for understanding how everything fits together before how each part works
individually

Become familiar with the textbook!

Don’t ask how, ask why a particular solution you see works

In the exam:

Optimize for what’s easy for you at first

Make sure a grader understands your thought processes

Remain calm

After the exam:

You’re done! We’ll take it from here.

Good luck!
You can all do this!

