
Chris Piech Section #8

CS 106A March 3, 2019

Section Handout #8: Data Structures and The Internet
Problems by Brandon Burr, Patrick Young, Nick Troccoli and Andrew Tierno

Your task for this week is to write server program for an application called FlightPlanner

allow the user to plan a round-trip flight route.

You will need to apply your knowledge of file reading, data structures, string parsing,

internet applications, and more to create this program. We have included specific details

about the client and server programs below.

Flight Planner

A critical issue in building these programs is designing appropriate data structures to keep

track of the information you'll need in order to produce flight plans. You'll need to both

have a way of keeping track of information on available flights that you read in from the

flights.txt file, as described below, as well as a means for keeping track of the flight

routes that the user is choosing in constructing their flight plan. Consider how both

ArrayLists and HashMaps might be useful to store the information you care about.

1. Flight

We need a sensible data structure to hold information about each of the flights!

Specifically, we need to keep track of where a flight is coming from, where it is going to,

and how long it will take to get from its source to its destination.

Implement the Flight class in the empty file Flight.java with whatever instance

variable, constructors, and methods you think are appropriate. Keep in mind the requests

that FlightPlannerServer will eventually have to handle. Remember, when designing a

class, you should to think about promises. What kind of information are you promising to

the people who use your class? What sort of behaviors would be most useful for the context

in which the class is used?

2. FlightPlannerServer

There are two types of requests that the server needs to handle from the client in order for

the client to do its job:

Command Parameters Response

getAllCities N/A

Returns the list of all cities,

as a string, that the user can

visit.

getDestinations city (String)

Returns a list of all cities

that the user can travel to

and the times to get to each

destination from the given

 – 2 –

city in the format specified

below.

The flight data come from a file named flights.txt, which has the following format:

• Each line consists of a source city, a destination city, and the travel time between

them in hours separated by commas as in,

San Francisco,Singapore,20.9

• The file may contain blank lines for readability (you should just ignore these).

An excerpt of the data file appears below.

San Francisco,Singapore,20.9

San Francisco,London,10.4

New York,London,6.50

New York,San Francisco,6.16

New York,Singapore,22.3

New York,New Delhi,13.9

London,New York,8.16

London,San Francisco,11.3

London,Nairobi,15.6

New Delhi,New York,15.5

New Delhi,Singapore,6.00

Nairobi,Singapore,14.3

Nairobi,London,15.5

Nairobi,Lima,27.2

Your server should:

• Read in the flight information from the file flights.txt and store it in an

appropriate data structure when it begins running.

• Respond to getAllCities and getDestinations requests as described above.

• Specifically, if we called the command getDestinations with the parameter "New

Delhi" we would expect it to return the String
 [New Delhi->New York:15.5, New Delhi->Singapore:6.00]

and more generally
 [source->destination1:time1, source->destination2:time2,...]

Hint: when a server receives a request, it must respond with a String. If you need to

respond with a list (e.g. an ArrayList), one method is to return the value of that list’s

toString method. For instance:

 ArrayList<Flight> myList = ...

String stringToSend = myList.toString();

when you call this method on an ArrayList of a class (like your Flight class),

 – 3 –

myList.toString() will call the toString function of each element in your list! How

can we take advantage of this fact to produce the desired response?

