
Sarai Gould & Laura Cruz-Albrecht Handout #7

CS 106A July 3, 2019

Debugging
Thanks to Eric Roberts, Nick Parlante and Mehran Sahami for portions of this handout.

Much of your time as a computer programmer will likely be spent debugging. This

phenomenon is best described by a quotation from one of the first computer pioneers,

Maurice Wilkes:

As soon as we started programming, we found to our surprise that it wasn’t as

easy to get programs right as we had thought. We had to discover debugging. I

can remember the exact instant when I realized that a large part of my life from

then on was going to be spent in finding mistakes in my own programs.

— Maurice Wilkes, 1949

In order to be better prepared to undertake the more complex future debugging that you

will be doing, we aim to give you here both a sense of the philosophy of debugging as well

as to teach you how to use some of the practical tips that make testing and debugging easier.

Using a Debugger

Because debugging is a difficult but nonetheless critical task, it is important to learn the

tricks of the trade. The most important of these tricks is to get the computer to show you

what it is doing, which is the key to debugging. The computer, after all, is there in front of

you. You can watch it work. You cannot ask the computer why it is not working, but you

can have it show you its work as it goes. Modern programming environments like Eclipse

come equipped with a debugger, which is a special facility for monitoring a program as it

runs. Using the debugger helps you build up a good sense of what your program is doing,

and often points the way to the mistake.

To illustrate the operation of the Eclipse debugger in as concrete a way as possible, let us

look at how we might us the debugger to find bugs in the GuessYourNumber.java program

shown in Figure 2 below. As the bug icon indicates, the program is buggy. As a

programmer, it is your job to figure out why. The remainder of this handout describes the

techniques we might use to look for bugs with the help of the Eclipse debugger.

Tip: follow along! The Eclipse project containing the GuessYourNumber.java program

is on the course website, alongside this handout in the “Handouts” tab.

 – 2 –

Figure 2. Buggy program intended to guess the user’s number

/*

 * File: GuessYourNumber.java

 * ---------------------

 * This program attempts to guess what number you are thinking of.

 * It asks for the range of your number, and then proceeds to make

 * guesses until it narrows in on your number!

 */

import acm.program.*;

public class GuessYourNumber extends ConsoleProgram {

 public void run() {

 println("I will guess your number!");

 int lowest = readInt("Lower bound (inclusive)? ");

 int highest = readInt("Upper bound (inclusive)? ");

 int answer = findNumber(highest, lowest);

 println("Ha! I knew your number was " + answer + "!");

 }

 /*

 * Returns the final computer guess after narrowing down the

 * range of possible numbers the user is thinking of. Takes

 * as parameters the initial bounds of the user's number.

 */

 private int findNumber(int lowerBound, int upperBound) {

 while (lowerBound != upperBound) {

 int guess = (upperBound - lowerBound) / 2;

 // Update our bounds depending on the result

 int check = readInt(guess + "? (0=yes, -1=low, 1=high)");

 if (check == -1) {

 lowerBound = guess + 1;

 } else if (check == 1) {

 upperBound = guess - 1;

 } else {

 lowerBound = guess;

 upperBound = guess;

 }

 }

 return lowerBound;

 }

}

The general idea for this program is to ask the user for the range containing their secret

number, and then keep narrowing in the range until we end up with one number that must

be the user’s guess. The program will always guess the midpoint of the current range of

possible numbers.

 – 3 –

Assessing the symptoms

Before we start using the debugger, it is always valuable to run the program to get a sense

of what the problems might be. If we run it with a secret number of 3, we might see:

Even though the program is “running,” the results do not look so good. The problem is

that we told the program that our secret number is between 0 and 10, but the program

immediately guesses -5. Something is definitely wrong.

The Eclipse Debugger

One of the easiest ways to figure out what the program is doing is to use the Eclipse

debugger. When you run a project under Eclipse, you can use the debugger to set

breakpoints in your code, which tells the debugger to pause on that line and await further

instructions. This enables you to step through the program one step at a time, examine

variables, and do other useful things.

Debugging, however, is a creative enterprise, and there is no magic technique that tells you

what to do. You need to use your intuition, guided by the data that you have. In the

GuessYourNumber program, intuition is likely to suggest that the problem has something

to do with coming up with a guess. Thus, we might set a breakpoint on line 27, inside the

while loop, so that the program will stop there. To do so, double-click in the just barely

gray margin at that line, at which point a small circle appears indicating that there is now

a breakpoint on that line, as shown:

 – 4 –

Once we have set the breakpoint, our next step is to run the program as normal, with the

running person icons. The program will start and ask us to enter our secret number’s

bounds. Suppose that we again enter 0 and 10. At that point, the program enters the while

loop, where it stops at the breakpoint as shown below. (Note that you may first see a dialog

box which says "This kind of launch is configured to open the Stanford Debugger

perspective when it suspends. Do you want to open this perspective now?" If you do see

this dialog, go ahead and click "Yes".) The arrow and the highlight mark the line of code

that is about to execute.

There is a lot more information displayed in Eclipse’s debugging perspective as well. The

“Debug” pane at the upper left, for instance, shows the execution history of the program.

These lines tell us where we are in the execution. We are currently at line 27 of

findNumber, which was called from line 16 of run. Each of these constitutes a stack

frame, as described in the text.

The pane on the upper right is the “Variables” pane, which allows us to see the current

values of variables in the current stack frame:

 – 5 –

In this frame, the local variables are simply the parameters to findNumber. We entered

the bounds 0 and 10, so those are stored here. But – wait a minute – the lower and upper

bounds seem to be flipped. Why does this frame show the lower bound as 10 and the upper

bound as 0? Clearly the computer is doing something wrong.

In point of fact, that diagnosis—tempting as it sometimes is for all of us—is almost

certainly incorrect. The computer is almost certainly doing exactly what we told it to do.

The problem is that the programmer has done something wrong. The task now is to find

out what that is. The problem is obviously earlier in the program than intuition might

suggest – perhaps we are storing the bounds incorrectly – so it is necessary to go back and

insert an earlier breakpoint.

We can now go back and stop the GuessYourNumber program, either by clicking in its

close box or by clicking on the terminate button (red square) in the top toolbar. Double

click in the margin on line 13, the first line of run, to put a breakpoint there. If we debug

the program again, it will soon stop in the following state:

Finding the critical clues

As always in debugging, our primary goal is to figure out what the program is doing rather

than why is it not doing what we wanted. To do so, we need to gather as much information

as possible, and Eclipse offers great tools for doing so. The most useful tools at this point

are the various controls that appear along the top of the main window, of which the

following are the most important:

 Resume. Continues the program from where it last stopped, either because

of hitting a breakpoint or because the user clicked Suspend.

 – 6 –

 Suspend. Stops the program immediately as if it had hit a breakpoint.

 Terminate. Exits from the program entirely.

 Step Into. Executes one statement of the program and then stops again. If

that statement includes a method call, the program will stop at the first line

of that method. As noted below, this option is not as useful as Step Over.

 Step Over. Executes one statement of the program at this level and then stops

again. Any method calls in the statement are executed through to completion

unless they contain explicit breakpoints.

 Step Return. Continues to execute this method until it returns, after which

the debugger stops in the caller (the method that called the current method).

The three stepping options are extremely useful, but you need to take some care in choosing

which one to use. In most cases, Step Over is the right option to use. Intuitively, it has

the effect of continuing to the next step at this method level, allowing you to stay at the

same conceptual level of abstraction. If the current statement calls one of your own

methods, Step Into may be exactly what you want, because that will allow you to debug

that subsidiary method if necessary. The danger with Step Into arises when the current

statement contains calls to library methods such as println. In such cases, Step Into will

try to step through the code for those methods, which can be extremely confusing.

We would like to step through each line of the run method to make sure we are handling

the bounds correctly. Therefore, Step Over is the best choice. If we select that, “I will

guess your number!” will be printed to the console, followed by the debugger stopping

at the next line:

Click Step Over once more to execute the line asking the user for the lower bound, and

notice that the debugger does not pause on the next line. Why is this? readInt has not

finished executing! Back in the program window, the program is now prompting us for a

number. Remember that readInt executes until we enter a number and press ENTER. If

we enter the lower bound 0 followed by ENTER, the debugger will now pause on line 15.

If we take a look at the Variables pane, things look ok so far; the variable lowest is correctly

storing the value 0 that we just entered.

 – 7 –

Press Step Over once more, enter the upper bound 10, and the debugger should now pause

on line 16. If we take a look at the Variables pane again, the variable highest correctly

has value 10.

This all looks correct; so what gives? It might be that the issue is in calling findNumber.

We would like to now step the debugger into the method findNumber to execute each line

there one at a time. To do this, with the debugger stopped at the line where findNumber

is called, click Step Into to go into the findNumber method. The debugger should now be

paused on the first line of findNumber, line 26. (if we had instead clicked Step Over, the

debugger would have executed the entire findNumber method, and paused again only once

it reaches line 17 – the next line in the same method - which is not what we want).

Here, we find something interesting; if we look at the Variables pane, we notice that the

lower and upper bound values have swapped!

That is strange; they were just correct a moment ago in the run method…but very soon,

the problem will jump out. The values in run were stored correctly, but they were passed

 – 8 –

as parameters in the wrong order to findNumber! findNumber expects the first parameter

value to be the lower bound, and the second parameter to be the upper bound. It is easy to

realize this because we have a descriptive comment and variable names for findNumber.

So we need to rewrite line 16 in run as follows:

 int answer = findNumber(lowest, highest);

Now, after making this change, an important next step is to immediately confirm that this

change fixes the issue we saw. An easy way to do this is to remove all existing breakpoints

(double-click on a breakpoint dot to remove it) and add a new one at line 26, which is the

start of findNumber. This way, we can instantly verify that findNumber has the correct

bounds values. Run the program with bounds values 0 and 10 once more, and….

Yes! The bounds values are correct. Good job, bug-hunter!

Now, let us try running the program without any breakpoints, with the same bounds of 0

and 10. Initially, it looks good! The program’s first guess is 5, which is exactly what we

expect given that the program always guesses the midpoint of the current bounds.

Continue, assuming our secret value is 8. Enter -1 to indicate that 5 is too low. However,

the next guess is lower, which does not make sense since we just told the program that 5

was already too low.

Alright, time to put on our debugger hats once more.

 – 9 –

From the previous bug we fixed, we know that findNumber is receiving the correct bounds

values. This helps us narrow down the problem to be somewhere in findNumber. This is

an important tactic; do your best to narrow down the possible place(s) in your program

where the bug could be coming from. If you can eliminate entire blocks of code or even

entire methods by confirming they work correctly, it will go a long way in helping you

track down the issue.

With this in mind, a reasonable guess for the location of this bug might be line 27, where

the program calculates its next guess. Put a breakpoint there and run the program with the

same bounds of 0 and 10. The debugger should stop on the line like so:

Now, we can step through each line of findNumber to find out what is going on. If we

press Step Over, the debugger jumps to line 30, since it steps to the next line of code (it

skips comments and blank space). In the Variables pane, we can see that guess has now

been created with value 5, which we previously said was correct.

If we click Step Over once more, the debugger will wait for us to enter a response in the

program window. For a secret number of 8, we enter -1 to indicate that the guess 5 is too

low. The debugger will now pause at the if statement on line 31. From the Variables

pane, we see that check has value -1, which is correct. So if we press Step Over now, the

debugger will enter the body of this if statement because the condition check == -1

evaluates to true. This is a neat benefit of the debugger; we can see exactly the flow of

our program through our loops and conditionals.

 – 10 –

This line that we are about to execute makes sense; if the program’s guess was too low,

then the smallest that the user’s secret number can be is guess + 1. Press Step Over to

confirm that lowerBound’s value is indeed updated to 6; the debugger even highlights the

change in yellow in the Variables pane!

At this point, the debugger is paused on line 33 with the else if statement. However, if

we press Step Over once more, the debugger will jump back up to the while loop

statement. The reason for this is, since the if statement condition evaluated to true, we

evaluate the if statement body and then skip the else if and the else. Press Step Over

again to once again stop on line 27, where the next guess is calculated.

From the Variables pane, we can see that our bounds values are correct: 6 and 10. But if

we press Step Over and check the value of the newly-created variable guess (remember

guess goes away at the end of each time around the while loop, and is re-created again

 – 11 –

later because of its scope), we see that it has value 2! In this case, the way in which the

difficulty of seeing the bug manifests itself has to do with thinking too literally about the

expressions as we have written them, seeing them as what we want them to mean as

opposed to what they in fact do mean. We want the next guess to be the midpoint of the

lower and upper bounds. But the equation on line 27 finds half the difference between the

two bounds, which only calculates the correct value when the lower bound is 0. This is

why the first guess seemed ok! But once we say that 5 is too low, the lower bound changes

to 6 and this equation no longer calculates reasonable values. If we instead take the average

of the two bounds, we should always get the correct value. Thus, line 27 should be:

int guess = (upperBound + lowerBound) / 2;

We just touched on another important debugging tactic, as mentioned in the 11 Truths of

Debugging. Make sure that you can explain why the proposed change will fix the problem

before you make the change. Do not simply make changes to see if they fix the problem;

you should know beforehand what the outcome will be. Otherwise, you risk making

unnecessary modifications and introducing additional bugs.

Go ahead and terminate the program, leaving the breakpoint on line 27 in, and run it once

more to confirm that our change fixed the issue. Enter 0 and 10 as the bounds, after which

the debugger should pause on line 27. This time, we have already stepped through the next

lines, so click the green Resume button; this tells the debugger to keep executing until it

hits our breakpoint again. The program should keep running; pretend our secret number is

9, and enter a -1 to indicate 5 is too high. The debugger again hits our breakpoint and

pauses; this time, press Step Over to see what the value of guess is.

8! Hooray! This is exactly what we expect, since this is the midpoint of the new bounds

6 and 10. And sure enough, if we remove the breakpoint, press Resume, and continue

playing with 9 as our mystery number, the program should continue making reasonable

guesses until it narrows in on 9.

 – 12 –

Note: one step command this tutorial did not touch on was Step Return. Step Return

tells the debugger to continue executing the method it is currently in, and pause at the line

that called this method. As a concrete example, if we have a breakpoint somewhere in

findNumber and we press Step Return, the debugger would continue executing the rest

of findNumber, and pause again on line 16 (which has already been executed), which is

where this method was called from. Essentially, as opposed to Step Into, which tells the

debugger to go down a level in your code, Step Return tells the debugger to go up a level.

Additional Note: the other debug control not touched on was Suspend. Suspend will

immediately pause your program, wherever it is, as though it hit a breakpoint. This is not

used as often (because usually you know where you would like to pause your program),

but is useful for debugging things like infinite loops. If you think your program is infinite

looping, for instance, you can press Suspend and the debug view will show you what line

of code is currently being executed, and allow you to step through your code from there.

Wrapping Up

One of the most common failures in the debugging process is inadequate testing. After

making the corrections described in the preceding sections, you could run this program for

some time, not see that anything is amiss, and assume that it is functioning correctly.

However, you should always test each part of your code rigorously to ensure that this is

the case as much as possible. For GuessYourNumber, for instance, with a range of 0 to 10

you could run your program for each secret number 0 to 10 to ensure that each one

functions correctly. That being said, there is no strategy that can guarantee that your

program is ever bug free. Testing helps, but it is important to keep in mind the caution

from Edsger Dijkstra that “testing can reveal the presence of errors, but never their

absence.” By being as careful as you can when you design, write, test, and debug your

programs, you will reduce the number of bugs, but you will be unlikely to eliminate them

entirely.

Additional Eclipse Tips

Once you have completed using the debugger and want to return to using Eclipse in the

regular "Editor" perspective (the one that you have been using most of the time), you can

simply go to the "Stanford Menu" and pick the "Editor" selection. This also works in

the other direction; if you would like to view the debug perspective, simply pick the

“Debugger” selection instead.

Additionally, if you close out of some of the Eclipse panes and cannot get them back, go

to the “Stanford Menu” and click “Reset UI”. This will restore Eclipse’s user interface

to the default view, showing all original panes.

 – 13 –

The 11 Truths of Debugging

1. Intuition and hunches are great—you just have to test them out. When a hunch and a fact

collide, the fact wins. That's life in the city.

2. Don’t look for complex explanations. Even the simplest omission or typo can lead to very

weird behavior. Everyone is capable producing extremely simple and obvious errors from

time to time. Look at code critically—don’t just sweep your eye over that series of simple

statements assuming that they are too simple to be wrong.

3. The clue to what is wrong in your code is in the values of your variables and the flow of

control. Try to see what the facts are pointing to. The computer is not trying to mislead you.

Work from the facts.

4. Be systematic and persistent. Don’t panic. The bug is not moving around in your code, trying

to trick or evade you. It is just sitting in one place, doing the wrong thing in the same way

every time.

5. If you code was working a minute ago, but now it doesn’t—what was the last thing you

changed? This incredibly reliable rule of thumb is the reason your section leader told you to

test your code as you go rather than all at once.

6. Do not change your code haphazardly trying to track down a bug. This is sort of like a scientist

who changes more than one variable in an experiment at a time. It makes the observed

behavior much more difficult to interpret, and you tend to introduce new bugs.

7. If you find some wrong code that does not seem to be related to the bug you were tracking,

fix the wrong code anyway. Many times the wrong code was related to or obscured the bug

in a way you had not imagined.

8. You should be able to explain in Sherlock Holmes style the series of facts, tests, and

deductions that led you to find a bug. Alternately, if you have a bug but can’t pinpoint it, then

you should be able to give an argument to a critical third party detailing why each one of your

functions cannot contain the bug. One of these arguments will contain a flaw since one of

your functions does in fact contain a bug. Trying to construct the arguments may help you to

see the flaw.

9. Be critical of your beliefs about your code. It’s almost impossible to see a bug in a function

when your instinct is that the function is innocent. Only when the facts have proven without

question that the function is not the source of the problem should you assume it to be correct.

10. Although you need to be systematic, there is still an enormous amount of room for beliefs,

hunches, guesses, etc. Use your intuition about where the bug probably is to direct the order

that you check things in your systematic search. Check the functions you suspect the most

first. Good instincts will come with experience.

11. Debugging depends on an objective and reasoned approach. It depends on overall perspective

and understanding of the workings of your code. Debugging code is more mentally

demanding than writing code. The longer you try to track down a bug without success, the

less perspective you tend to have. Realize when you have lost the perspective on your code

to debug. Take a break. Get some sleep. You cannot debug when you are not seeing things

clearly. Many times a programmer can spend hours late at night hunting for a bug only to

finally give up at 4:00A.M. The next day, they find the bug in 10 minutes. What allowed them

to find the bug the next day so quickly? Maybe they just needed some sleep and time for

perspective. Or maybe their subconscious figured it out while they were asleep. In any case,

the “go do something else for a while, come back, and find the bug immediately” scenario

happens too often to be an accident.

 — Nick Parlante, Stanford University

	The 11 Truths of Debugging

