
Sarai Gould & Laura Cruz-Albrecht Assignment 3

CS 106A July 10, 2019

Assignment #3—Breakout

Due: 10AM PST on Thursday, July 18th
This assignment may be done in pairs (which is optional, not required)

Based on handouts by Marty Stepp, Mehran Sahami, Eric Roberts, and Chris Piech with modifications by Brahm Capoor

The purpose of this assignment is to practice creating graphical programs, using concepts such as

events, animation, and instance variables. You will first implement two Sandcastles as warm-up

problems. Then, your main task will be to implement the classic arcade game of Breakout, an

animated game described in more detail below.

Note that this assignment may be done in pairs, or may be done individually. You may only pair up

with someone in the same section time and location. If you would like to work with a partner but

don’t have one, you can try to meet one in your section. If you work as a pair, comment both

members’ names on top of every .java file. Only one of you should submit the assignment; do not

turn in two copies.

In general, limit yourself to using Java syntax taught in lecture, and the parts of the textbook we have

read, up through the week of the release of this assignment (July 11). You may, however, use material

covered in class past this date for any optional extensions. If you would like to implement any

extensions, please implement them in a separate file, such as BreakoutExtra.java. Clearly comment

at the top of this file what extensions you have implemented. Instructions on how to add files to the

starter project are listed in the FAQ of the Eclipse page on the course website.

Sandcastles

Sandcastle #1: Prime Checker

A key challenge when writing large programs like Breakout is how best to decompose our solutions

into manageable and effectively-implemented methods. In order to practice this skill, you’ll begin

this assignment by writing a short method that takes in a positive integer greater than 1 as an input

and returns a boolean indicating whether or not that integer is prime.

As a reminder, a prime number that is defined such that its only factors are 1 and itself. In

PrimeChecker.java, we provide a run method that tests whether or not a series of numbers are

prime. Your job is to implement the isPrime method to check whether or not the number is prime.

Make sure to submit your PrimeChecker with Breakout.

Sandcastle #2: Mouse Reporter

To get you warmed up, you will next write a minimal program that leverages the essential concepts

needed for Breakout. Write a MouseReporter that creates a GLabel on the left side of the screen.

When the mouse is moved the label is updated to display the current x, y location of the mouse. If the

mouse is touching the label it should turn red, otherwise it should be blue.

 – 2 –

You should take advantage of the setLabel method that can be called on a GLabel. If you look in

Chapter 9 (page 299) at the methods that are defined at the GraphicsProgram level, you will discover

that there is a method

public GObject getElementAt(double x, double y)

that takes a position in the window and returns the graphical object at that location, if any. If there

are no graphical objects that cover that position, getElementAt returns the special constant null. If

there is more than one, getElementAt always chooses the one closest to the top of the stack, which

is the one that appears to be in front on the display. The starter code for MouseReporter stores the

label as an instance variable and adds it to the screen. Make sure to submit your MouseReporter

with Breakout.

 – 3 –

Breakout

Your main task is to write the classic arcade game of Breakout, which was invented by Steve Wozniak

before he founded Apple with Steve Jobs. It is a large assignment, but entirely manageable as long as

you follow the following pieces of advice:

• Start as soon as possible. This assignment is due in just over a week, which will be here before

you know it. Don’t wait until the last minute!

• Implement the program in stages, as described in this handout. Don’t try to get everything working

all at once. Implement the various pieces of the project one at a time and make sure that each one

is working before you move on to the next phase.

• Don’t try to extend the program until you get the basic functionality working. At the end of the

handout, we suggest several ways in which you could optionally extend the game. Several of these

are lots of fun. Don’t start them, however, until the basic assignment is working. If you add

extensions too early, you’ll find that the debugging process gets really difficult.

Game Mechanics

In Breakout, the player controls a rectangular paddle that is in a fixed position in the vertical

dimension but moves back and forth across the screen horizontally along with the mouse within the

bounds of the screen. A ball moves about the rectangular world and bounces off of surfaces it hits.

The world is also filled with rows of rectangular bricks that can be cleared from the screen if the ball

collides with them. The goal is to clear all bricks.

initial: after ball bounces: after hitting a brick: bouncing along top wall:

The player has three lives, or turns. On each turn, a ball is launched from the center of the window

toward the bottom of the screen at a random angle. That ball bounces off the paddle and the walls of

the world. The second of the figures above shows the ball’s path after two bounces, one off the paddle

and one off the right wall. (Note that the dotted line is there just to illustrate the ball’s path and won’t

appear on the screen.)

When the ball collides with a brick, the ball bounces as normal, but the brick disappears, as illustrated

in the third of the figures above. This diagram also shows the player moving the paddle leftward to

line it up with the oncoming ball.

 – 4 –

A turn ends when one of two conditions occurs:

1) The ball hits the lower wall, which means that the player must have missed it with the paddle.

In this case, the turn ends and the next ball is served if the player has any turns left. If not, the

player loses.

2) The last brick is eliminated. In this case, the player wins, and the game ends immediately.

After all the bricks in a particular column have been cleared, a path will open to the top wall. When

this situation occurs, the ball will often bounce back and forth several times between the top wall and

the upper line of bricks without the user ever having to worry about hitting the ball with the paddle.

This condition is called “breaking out”, as shown in the farthest-right of the figures above, and gives

meaning to the name of the game. That ball will go on to clear several more bricks before it comes

back down an open channel.

It is important to note that, even though breaking out is a very exciting part of the player’s experience,

you don’t have to do anything special in your program to make it happen. The game is simply

operating by the same rules it always applies: bouncing off walls, clearing bricks, and otherwise

obeying the laws of physics.

The Starter File

The starter project for this assignment has a little more in it than it has in the past, but none of the

important parts of the program. The starting contents of the Breakout.java file appear in Figure 1

(on the next page). This file takes care of the following details:

• It includes the imports you will need for writing the game.

• It defines the named constants that control the game parameters, such as the dimensions of the

various objects. Your code should use these constants internally so that changing them in your file

changes the behavior of your program accordingly.

Success in this assignment will depend on breaking up the problem into manageable pieces and

getting each one working before you move on to the next. The next few sections describe a reasonable

staged approach to the problem.

 – 5 –

Figure 1. The Breakout.java starter file has many constants

public class Breakout extends GraphicsProgram {

 // Dimensions of the canvas, in pixels

 // These should be used when setting up the initial size of the game,

 // but in later calculations you should use getWidth() and getHeight()

 // rather than these constants for accurate size information.

 public static final double CANVAS_WIDTH = 420;

 public static final double CANVAS_HEIGHT = 600;

 // Number of bricks in each row

 public static final int NBRICK_COLUMNS = 10;

 // Number of rows of bricks

 public static final int NBRICK_ROWS = 10;

 // Separation between neighboring bricks, in pixels

 public static final double BRICK_SEP = 4;

 // Width of each brick, in pixels

 public static final double BRICK_WIDTH = Math.floor(

 (CANVAS_WIDTH - (NBRICK_COLUMNS + 1.0) * BRICK_SEP) /

 NBRICK_COLUMNS);

 // Height of each brick, in pixels

 public static final double BRICK_HEIGHT = 8;

 // Offset of the top brick row from the top, in pixels

 public static final double BRICK_Y_OFFSET = 70;

 // Dimensions of the paddle

 public static final double PADDLE_WIDTH = 60;

 public static final double PADDLE_HEIGHT = 10;

 // Offset of the paddle up from the bottom

 public static final double PADDLE_Y_OFFSET = 30;

 // Radius of the ball in pixels

 public static final double BALL_RADIUS = 10;

 // The ball's vertical velocity.

 public static final double VELOCITY_Y = 3.0;

 // The ball's minimum and maximum horizontal velocity; the bounds of the

 // initial random velocity that you should choose (randomly +/-).

 public static final double VELOCITY_X_MIN = 1.0;

 public static final double VELOCITY_X_MAX = 3.0;

 // Animation delay or pause time between ball moves (ms)

 public static final double DELAY = 1000.0 / 60.0;

 // Number of turns

 public static final int NTURNS = 3;

 ...

}

 – 6 –

Approach

Since this is a tough program, we strongly recommend that you develop and test it in several stages,

always making sure that you have a program that compiles and runs properly after each stage. Here

are the stages we suggest, each discussed in more detail in the rest of the handout:

1) Bricks

2) Paddle

3) Ball and Bouncing

4) Collisions

5) Turns, End of Game, and Final Touches

Stage 1: Bricks
Before you start playing the game, you have to set up the various pieces. Thus, it probably makes

sense to implement the run method as two method calls: one that sets up the game and one that plays

it. An important part of the setup, and our first suggested task, consists of creating the rows of bricks

at the top of the game, which look like this:

The number, dimensions, and spacing of the bricks are specified using named constants in the starter

file, as is the distance from the top of the window to the first line of bricks. The only value you need

to compute is the x coordinate of the first column, which should be chosen so that the bricks are

centered in the window, with the leftover space divided equally on the left and right sides.

Each pair of rows has a given color; the colors run in the following sequence: Color.RED, ORANGE,

YELLOW, GREEN, CYAN. Do not assume that there will be an even number of rows, nor that there will

be no more than 10 rows.

You’ve already drawn 2D grids of objects (remember the Checkerboard problem from lecture?).

The part that is a touch more difficult is that you need to appropriately position and color the bricks.

Relevant constants: NBRICK_COLUMNS, NBRICK_ROWS, BRICK_SEP, BRICK_WIDTH,
BRICK_HEIGHT, BRICK_Y_OFFSET

Stage 2: Paddle
Our next suggested task is to create the paddle. In a sense, this is easier than the bricks, since there is

only one paddle, which is a filled GRect. You must set its size to be PADDLE_WIDTH by

PADDLE_HEIGHT and y-position relative to the bottom of the window to be PADDLE_Y_OFFSET. Note

that PADDLE_Y_OFFSET is the distance between the bottom of the screen and the bottom of the paddle.

 – 7 –

The paddle horizontally follows the mouse as it moves onscreen; specifically, you must make the

horizontal center of the paddle follow the mouse. Mouse tracking uses events discussed in Chapter

10 of the textbook, and in lecture on 7/10. You only have to pay attention to the x coordinate of the

mouse because the paddle’s y position is fixed. Also, do not allow any part of the paddle to move off

the edge of the screen. Check to see whether the x-coordinate of the mouse extends beyond the screen

boundary and ensure that the entire paddle is visible in the window.

Relevant constants: PADDLE_WIDTH, PADDLE_HEIGHT, PADDLE_Y_OFFSET

Stage 3: Ball + Bouncing
Now let's make the ball and get it to bounce around the screen (for now ignoring brick and paddle

collisions, or going off of the bottom).

At one level, creating the ball is easy, given that it’s just a filled GOval. The interesting part lies in

getting it to move and bounce appropriately. You are now past the “setup” phase and into the “play”

phase of the game. To start, create a ball and put it in the center of the window. As you do so, keep

in mind that the coordinates of the GOval do not specify the location of the center of the ball but rather

its upper left corner. The mathematics is not any more difficult, but may be a bit less intuitive.

The program needs to keep track of the velocity of the ball, which consists of two separate

components, which you will presumably declare as instance variables like this:

private double vx, vy;

You may make these private instance variables, as they will be used throughout your program and

are useful “game state”. The velocity components represent the change in position that occurs on each

time step. Initially, the ball should be heading downward, and you might try a starting velocity of

+3.0 for vy (remember that y values in Java increase as you move down the screen). The game would

be boring if every ball took the same course, so you should choose the vx component randomly.

 – 8 –

In line with our discussion of generating random numbers this week, you should make a random-

number generator:

1. Declare an instance variable rgen, which will serve as a random-number generator:

private RandomGenerator rgen = RandomGenerator.getInstance();

 Remember that instance variables are declared outside of any method but inside the class.

2. Initialize the vx variable as follows:

vx = rgen.nextDouble(1.0, 3.0);

if (rgen.nextBoolean(0.5)) vx = -vx;

 This code sets vx to be a random double in the range 1.0 to 3.0 and then makes it negative half

the time. This strategy works much better for Breakout than calling

nextDouble(-3.0, +3.0)

which might generate a ball going more or less straight down. That would make life far too easy

for the player.

Once you’ve done that, your next challenge is to get the ball to bounce around the world, ignoring

entirely the paddle and the bricks. To do so, you need to check to see if the coordinates of the ball

have gone beyond the boundary, taking into account that the ball has a nonzero size. Thus, to see if

the ball has bounced off the right wall, you need to see whether the coordinate of the right edge of the

ball has become greater than the width of the window; the other three directions are treated similarly.

(Recall you can use getWidth() and getHeight() to find the game world's size.) For now, have the

ball bounce off the bottom wall so that you can watch it make its path around the world. You can

change that test later so that hitting the bottom wall signifies the end of a turn.

Computing what happens after a bounce is extremely simple. If a ball bounces off the top or bottom

wall, all you need to do is reverse the sign of vy. Symmetrically, bounces off the side walls simply

reverse the sign of vx.

Relevant constants: BALL_RADIUS, VELOCITY_X_MIN, VELOCITY_X_MAX, VELOCITY_Y, DELAY

Stage 4: Collisions
Now comes the interesting part. In order to make Breakout into a real game, you have to be able to

tell whether the ball is colliding with another object in the window. As scientists often do, it helps to

begin by making a simplifying assumption and then relaxing that assumption later. Suppose the ball

were a single point rather than a circle. In that case, how could you tell whether it had collided with

another object? What happens if you call

getElementAt(x, y)

where x and y are the coordinates of the ball? If the point (x, y) is underneath an object, this call

returns the graphical object with which the ball has collided. If there are no objects at the point

(x, y), you’ll get the value null.

So far, so good. But, unfortunately, the ball is not a single point. It occupies physical area and

therefore may collide with something on the screen even though its center does not. The easiest thing

to do—which is in fact typical of the simplifying assumptions made in real computer games—is to

 – 9 –

check a few carefully chosen points on the outside of the ball and see whether any of those points has

collided with anything. As soon as you find something at one of those points, you can declare that

the ball has collided with that object.

In your implementation, the easiest thing to do is to check the four corner points on the square in

which the ball is inscribed. Remember that a GOval is defined in terms of its bounding rectangle, so

that if the upper left corner of the ball is at the point (x, y), the other corners will be at the locations

shown in this diagram:

These points have the advantage of being outside the ball—which means that getElementAt can’t

return the ball itself—but nonetheless close enough to make it appear that collisions have occurred.

Thus, for each of these four points, you need to:

1. Call getElementAt on that location to see whether anything is there.

2. If the value you get back is not null, then you need look no farther and can take that value as the

GObject with which the collision occurred.

3. If getElementAt returns null for a particular corner, go on and try the next corner.

4. If you get through all four corners without finding a collision, then no collision exists.

It would be very useful to write this section of code as a separate method

private GObject getCollidingObject()

that returns the object involved in the collision, if any, and null otherwise. You could then use it in

a declaration like

GObject collider = getCollidingObject();

which assigns that value to a variable called collider.

From here, the only remaining thing you need to do is decide what to do when a collision occurs.

There are only two possibilities. First, the object you get back might be the paddle, which you can

test by checking

if (collider == paddle) . . .

If it is the paddle, you need to bounce the ball so that it starts traveling up. If it isn’t the paddle, the

only other thing it might be is a brick, since those are the only other objects in the world. Once again,

you need to cause a bounce in the vertical direction, but you also need to take the brick away. To do

so, all you need to do is remove it from the screen by calling the remove method.

Relevant constants: None

 – 10 –

Stage 5: Turns, End of Game, and Final Touches
We’re almost there! There are, however, a few more important details you need to take into account:

• You’ve got to give the player 3 chances (constant: NTURNS) to break all the bricks. Every time the

ball hits the bottom edge of the window, the player loses 1 turn. When the turn ends, if the player

has more turns remaining, your program should re-launch the ball from the center of the window

toward the bottom of the screen. The easiest way to do this is to call setLocation(x, y) on the

ball to move it to the center of the window. Don't forget that the ball should receive a new random

x velocity at the start of each turn.

• We recommend that before each round, you wait for the user to click the mouse by calling the

waitForClick() method, which pauses until the user clicks the mouse.

• As part of tracking turns, you’ve got to take care of the case when the ball hits the bottom wall.

In the prototype you’ve been building, the ball just bounces off this wall like all the others, but

that makes the game pretty hard to lose. You’ve got to modify your loop structure so that it tests

for hitting the bottom wall as one of its terminating conditions.

• You’ve got to check for the other terminating condition, which is hitting the last brick. How do

you know when you’ve done so? Although there are other ways to do it, one of the easiest is to

have your program keep track of the number of bricks remaining. Every time you hit one, subtract

one from that counter. When the count reaches zero, you must be done. In terms of the

requirements of the assignment, you can simply stop at that point, but it would be nice to give the

player a little feedback that at least indicates whether the game was won or lost.

• You’ve got to experiment with the settings that control the speed of your program. How long

should you pause in the loop that updates the ball? Do you need to change the velocity values to

get better play action?

• You’ve got to test your program to see that it works. Play for a while and make sure that as many

parts of it as you can check are working. A particular case to test: just before the ball is going to

pass the paddle, move the paddle quickly so that it slides through the ball from the side. Does

everything still work, or does your ball seem to get "glued" to the paddle? Why might this error

occur? (think about how the ball collides with objects, and how this might explain the observed

behavior) How can you fix it? (It is easier to test for this if you temporarily make the paddle taller

by changing PADDLE_HEIGHT.)

Relevant constants: NTURNS

 – 11 –

Optional Extra Features
There are many possibilities for optional extra features that you can add if you like, potentially for a

small amount of extra credit. If you are going to do this, please submit two versions of your program:

Breakout.java that meets all the assignment requirements, and a BreakoutExtra.java containing

your extended version (see the FAQ on the Eclipse page for how to create a new file in your project).

At the top of your extended file, in your comment header, you must comment what extra features

you completed. Here are a few ideas of for possible extensions (of course, we encourage you to use

your imagination to come up with other ideas as well):

• Add sounds. You might want to play a short bounce sound every time the ball collides with a brick

or the paddle. This extension turns out to be very easy. The starter project contains an audio clip

file called bounce.au that contains that sound. You can load the sound by writing

AudioClip bounceClip = MediaTools.loadAudioClip("bounce.au");

 and later play it by calling

bounceClip.play();

 The Java libraries do make some things easy.

• Add messages. The game is more playable if at the start it waits for the user to click the mouse

before serving each ball and announces whether the player has won or lost at the end of the game.

These are just GLabel objects that you can add and remove at the appropriate time.

• Improve the user control over bounces. The program gets rather boring if the only thing the player

has to do is hit the ball. It is far more interesting, if the player can control the ball by hitting it at

different parts of the paddle. The way the old arcade game worked was that the ball would bounce

in both the x and y directions if you hit it on the edge of the paddle from which the ball was coming.

• Add in the “kicker.” The arcade version of Breakout lured you in by starting off slowly. But, as

soon as you thought you were getting the hang of things, the program sped up, making life just a

bit more exciting. As one example of this, you might consider adding this feature by doubling the

horizontal velocity of the ball the seventh time it hits the paddle, figuring that’s the time the player

is growing complacent.

• Keep score. You could easily keep score, generating points for each brick. In the arcade game,

bricks were more valuable higher up in the array, so that you got more points for red bricks than

cyan bricks. You could display the score underneath the paddle, since it won’t get in the way there.

• Use your imagination. What else have you always wanted a game like this to do?

 – 12 –

Grading

Functionality: Your code should compile without any errors or warnings. We will run your program

with a variety of different constant values to test whether you have consistently used constants

throughout your program.

In general, for the required parts of the assignment, limit yourself to using Java syntax taught in

lecture and the parts of the textbook we have read through July 11.

Style: A particular point of emphasis for style grading on this assignment is the proper usage of

private instance variables. You should minimize the instance variables in your program; do NOT

make a value into an instance variable unless absolutely necessary. Write a brief comment on each

instance variable in your code to explain what it is for and why you feel it necessary. All instance

variables must be private.

Beyond this, follow style guidelines taught in class and listed in the course Style Guide. For example,

use descriptive names for variables and methods. Format your code using indentation and whitespace.

Avoid redundancy using methods, loops, and factoring. Use descriptive comments, including at the

top of each .java file, atop each method, inline on complex sections of code, and a citation of all

sources you used to help write your program.

Decomposition: Break down the problem into coherent methods, both to capture redundant code and

also to organize the code structure. Each method should perform a single clear, coherent task. No one

method should do too large a share of the overall work. Your run method should represent a concise

summary of the overall program, calling other methods to do the work of solving the problem, but

run itself should not directly do much of the work. In particular, run should never directly create

graphical components like the paddle, ball, or bricks. Nor should it directly check for collisions or

respond to them. Instead, you should delegate these tasks to other methods that are called by run.

Honor Code: Follow the Honor Code when working on this assignment. Submit your own work and

do not look at others' solutions (outside of your pair, if you are part of a pair). Do not give out your

solution. Do not search online for solutions. Do not place a solution to this assignment on a public

web site or forum. Solutions from this quarter, past quarters, and any solutions found online, will be

electronically compared. If you need help on the assignment, please feel free to ask.

Good luck, and have fun!

	Due: 10AM PST on Thursday, July 18th
	Sandcastles
	Breakout
	Grading

