Sarai Gould & Laura Cruz-Albrecht Assignment #4
CS 106A July 18,2019

Assignment #4 — ParaKarel
Due: 10am on Monday, July 29th

This assignment may be done in pairs (which is optional, not required)

Based on a handout by Eric Roberts

For this assignment, your mission is to write a program that plays the game of ParaKarel!
This game is similar to Hangman. The program is designed to give you some practice
writing programs that manipulate strings and files.

When the user plays ParaKarel, the computer first selects a secret word at random from a
list built into the program. The program then prints out a row of dashes—one for each
letter in the secret word and asks the user to guess a letter. If the user guesses a letter that
is in the word, the word is redisplayed with all instances of that letter shown in the correct
positions, along with any letters correctly guessed on previous turns. If the letter does not
appear in the word, the user is charged with an incorrect guess. The user keeps guessing
letters until either (1) the user has correctly guessed all the letters in the word or (2) the
user has made seven incorrect guesses. Two sample runs that illustrate the play of the
game are shown in Figure 1 on the next page.

When it is played by children, the real fascination (a somewhat morbid fascination, I
suppose) from Hangman comes from the fact that incorrect guesses are recorded by
drawing an evolving picture of the user coming to their demise. In this version we are going
to draw Karel attached to a parachute with a number of cords equal to the number of
guesses left. At the start of the game, Karel has seven cords (pictured on the left). As you
run low on guesses Karel runs low on cords (pictured in the middle). When you are out of
guesses, Karel is out of cords (pictured on the right)... sad times.

To get you warmed up we ask that you first write a minimal program (sandcastle) that
leverages the essential concepts needed for ParaKarel:

Sandcastle: XOR

Write a method xor (String input) which flips a string of Os and 1s. XOR is an
important logic gate in CS that essentially flips bits! It can be handy for simple
encryption, determining when certain things are odd, and determining if only one of
two things is true, and more!

xor("010101") returns "101010"
xor("000111") returns "111000"

You can expect that the input strings will never contain any characters other than Os
and 1s. You don’t need to account for invalid characters in your Strings of bits.

Design and test your ParaKarel program in three parts. The first part gets the text game
working without any graphics at all and with a fixed set of secret words. The second part
consists of drawing the graphics for ParaKarel. The final part requires you to replace the
supplied version of the secret word list with one that reads words from a file.

Figure 1. Two sample runs of the ParaKarel program (console only)

[JON) ParaKarel [NON | ParaKarel
Welcome to ParaKarel Welcome to ParaKarel
'Your word now looks like this: ———— Your word now looks like this: ——————-
You have 7 guesses left. You have 7 guesses left.
Your guess: a Your guess: a
There are no A's in the word. There are no A's in the word.
Your word now looks like this: ————— Your word now looks like this: ———————
You have 6 guesses left. You have 6 guesses left.
Your guess: e Your guess: e
There are no E's in the word. That guess is correct.
Your word now looks like this: ————— Your word now looks like this: ————— E-
You have 5 guesses left. You have 6 guesses left.
Your guess: i Your guess: i
There are no I's in the word. There are no I's in the word.
Your word now looks like this: ———— Your word now looks like this: —————E-
You have 4 guesses left. You have 5 guesses left.
Your guess: o Your guess: o
There are no 0's in the word. That guess is correct.
Your word now looks like this: ————— Your word now looks like this: -0--—-E-
You have 3 guesses left. You have 5 guesses left.
Your guess: u Your guess: u
That guess is correct. That guess is correct.
Your word now looks like this: -U-—- Your word now looks like this: -0--U-E-
You have 3 guesses left. You have 5 guesses left.
Your guess: s Your guess: s
There are no S's in the word. There are no S's in the word.
Your word now looks like this: -U-— Your word now looks like this: -0--U-E-
You have 2 guesses left. You have 4 guesses left.
Your guess: t Your guess: t
There are no T's in the word. That guess is correct.
Your word now looks like this: -U-— Your word now looks like this: -0--UTE-
You have 1 guesses left. You have 4 guesses left.
Your guess: r Your guess: r
There are no R's in the word. That guess is correct.
You're completely hung. Your word now looks like this: -0--UTER
The word was: FUZZY You have 4 guesses left.
Your guess: ¢
That guess is correct.
Your word now looks like this: CO-—UTER
You have 4 guesses left.
Your guess: m
That guess is correct.
Your word now looks like this: COM-UTER
You have 4 guesses left.
Your guess: p
That guess is correct.
You win.
The word was: COMPUTER

3

Note that your program only needs to be able to play the ParaKarel game once through
(i.e., the player guessing one word), but it should be pretty easy to extend your program to
allow the player to play multiple rounds.

Part I —Playing a console-based game

In the first part of this assignment, your job is to write a program that handles the user
interaction component of the game —everything except the graphical display. To solve the
problem, your program must be able to:

¢ Choose a random word to use as the secret word. That word is chosen from a word list,
as described in the following paragraph.

» Keep track of the user’s partially guessed word, which begins as a series of dashes and
then gets updated as correct letters are guessed.

* Implement the basic control structure and manage the details (ask the user to guess a
letter, keep track of the number of guesses remaining, print out the various messages,
detect the end of the game, and so forth).

The only operation that is beyond your current knowledge is that of representing the list of
words from which you can choose a word at random. For the first two parts of the
assignment, you will simply make use of a method that we’ve given you called
getRandomWord. The implementation of the method you’ve been given is only a temporary
expedient to make it possible to code the rest of the assignment. In Part III, you will replace
the definition we’ve provided with one that utilizes a list of words from a data file.

The strategy of creating a temporary implementation that provides enough functionality to
implement the rest of the program is a common technique in programming. Such
temporary implementations are usually called stubs. A game that used this implementation
of getRandomWord would quickly become uninteresting because there are only ten words
available. Even so, it will allow you to develop the rest of the program and then come back
and improve this part later.

Part I is a string manipulation problem using the methods developed in Chapter 8. The
sample runs in Figure 1 should be sufficient to illustrate the basic operation of the game,
but the following points may help to clarify a few issues:

* You should accept the user’s guesses in either lower or upper case, even though all
letters in the secret words are written in upper case.

* If the user guesses something other than a single letter, your program should tell the user
that the guess is illegal and accept a new guess.

» If the user guesses a correct letter more than once, your program should simply do
nothing. Guessing an incorrect letter a second time should be counted as another wrong
guess. (In each case, these interpretations are the easiest way to handle the situation,
and your program will probably do the right thing even if you don’t think about these
cases in detail.).

Figure 2. Stub implementation of ParaKarelLexicon

/[**
* Method: Get Random Word

* This method returns a word to use in the ParaKarel game. It
* randomly selects from among 10 choices.
*/

private String getRandomWord() {

int index = rg.nextInt(10);

if(index == 0) return "BUOY";
if(index == 1) return "COMPUTER";
if(index == 2) return "CONNOISSEUR";
if(index == 3) return "DEHYDRATE";
if(index == 4) return "FUZZY";
if(index == 5) return "HUBBUB";
if(index == 6) return "KEYHOLE";
if(index == 7) return "QUAGMIRE";
if(index == 8) return "SLITHER";
if(index == 9) return "ZIRCON";

throw new ErrorException("getWord: Illegal index");

Remember to finish Part I before moving on to Part II. Part II is arguably more fun, but it
is essential to develop large programs in manageable stages.

Part II— Adding graphics

For Part II, your task is simply to extend the program you have already written so that it
now keeps track of the ParaKarel graphical display. Although you might want to spice
things up in your extensions, the simple version of the Karel parachute looks like this:

5

The first thing you should do when you begin Part I is to create a new Gcanvas and install
it in the program window next to the console. The Parakarel class itself is an instance of
a ConsoleProgram, which means that the startup code in the ACM libraries has installed
an I0Console in the window that fills the entire space. Your next task is to add a Gcanvas
to the program window as well. The code you need for this part is extremely simple. First,
in the instance variables section of the ParaKarel program, you need to declare an instance
variable for the canvas by writing

private GCanvas canvas = new GCanvas();
and then add the following init method to your program:

public void init() {
add (canvas);

}

Note that your Parakarel program will have both an init and a run method as a result,
and that is perfectly fine. init is a method that gets executed before the program window
is displayed. This init method adds the canvas to the window prior to the run method
being executed; the run method is where the execution of your game will start after the
window is initialized. By default, the contents of the program window are given equal
amounts of space side by side. Since this is a console program, the console is already
installed and will therefore show up in the left column. When you add the Gcanvas it will
occupy the second column, which means that the console and graphics components of the
window will each get half the screen area, as shown in Figure 4 below. Input and output
from the Parakarel program will continue to appear on the console, and any objects you
add to the variable canvas will appear in the area on the right.

Figure 3. Screen shot showing side-by-side console (left) and canvas (right)
) @ ParaKare

Importantly: All GraphicsProgram methods now need to be called on the canvas object.
This is because a ConsoleProgram does not know how to handle graphics logic.

When you want to add Gobjects to the screen, you need to use canvas.add(object).
Instead of using getwidth() oOr removeAll(), use canvas.getWidth() or
canvas.removeAll().

—_6—

This method demonstrates how to draw an image in a console program with an added
GCanvas called canvas:

private void drawBackground() {
GImage bg = new GImage("background.jpg");
bg.setSize(canvas.getWidth(), canvas.getHeight());
canvas.add(bg, 0, 0);

At all times in the program you should display: a background, Karel with their parachute,
the partially guessed word and the user’s incorrect guesses. The graphics use four different
images:

File Name Description

“background.jpg” has the nice sky background,
“karel.png” has the Karel image.
“parachute.png” has the parachute image.
“karelFlipped.png” has a picture of Karel upside down.

The size and y-location of the images and text (as well as the text fonts) are stored as

Figure 4. Midway through a graphical ParaKarel game

O [©) ParaKarel

Welcome to ParaKarel

Your word looks like this: —-————
You have 7 guesses left

Your guess: a

There are no A's in the word.
Your word looks like this: —————
You have 6 guesses left

Your guess: e

There are no E's in the word.
Your word looks like this: —————
You have 5 guesses left

Your guess: i

There are no I's in the word.
Your word looks like this: —————
You have 4 guesses left

Your guess: o

There are no 0's in the word.
Your word looks like this: —————
You have 3 guesses left

Your guess: u

That guess is correct.

Your word looks like this: -U-——
You have 3 guesses left

Your guess: z

That guess is correct.

Your word looks like this: -UZZ-
You have 3 guesses left

Your guess:

-UZZ-

AEIO

constants. Make sure that all objects are centered. Karel should initially be connected to
the parachute by seven lines which are evenly spaced along the bottom of the parachute,
and connect to the top-center of Karel. As the user guesses letters incorrectly the cords

_7-

should break from outside in. First break the furthest most right string, then break the
furthest most left string, and so forth. Figure 4 shows the end of a session in which the
user is trying to guess Fuzzy. When Karel is out of strings, you should show them upside
down to show that Karel is free falling as in Figure 5. Sorry Karel.

Figure 5. When you run out of guesses, Karel runs out of hope
O @ ParaKarel

HICIS arc 1nu © 5 411 Lie wuilu.
Your word looks like this: ————
You have 5 guesses left.

Your guess: i

There are no I's in the word.
Your word looks like this: ————-
You have 4 guesses left.

Your guess: o

There are no 0's in the word.
Your word looks like this: —=——-
You have 3 guesses left.

Your guess: u

That guess is correct.

Your word looks like this: -U-—-
You have 3 guesses left.

Your guess: z

That guess is correct.

Your word looks like this: -UZZ-
You have 3 guesses left.

Your guess: r

There are no R's in the word.
Your word looks like this: -UZZ-
You have 2 guesses left.

Your guess: s

There are no S's in the word.
Your word looks like this: -UZZ-
You have 1 guesses left.

Your guess: t

There are no T's in the word.

rou lose. e ruzay -UZZ-
AETQORST

Part III —Reading the lexicon from a data file

Your job in this part of the assignment is simply to re-implement the getRandomWord
method so that instead of selecting from a meager list of ten words, it reads a much larger
word list from a file. The steps involved in this part of the assignment are as follows:

1. Open the data file ParakarelLexicon.txt using a Scanner that will allow you to read
it line by line.

Read the lines from the file into an ArrayList.

3. Reimplement the getRandomWord method so that it uses the ArrayList from step 2 as
the source of the words.

The first two steps should be at the start of your program in their own method.
getRandomWord should rely on the file reading having already happened; if you were to
call getRandomWord twice, you would not read the file twice.

Note that methods which use getRandomwWord should not have to change in response to this
change in the implementation. Insulating parts of a program from changes in other parts
is a fundamental principle of good software design.

Extensions

There are many ways to extend ParaKarel to make it more fun. Here are some ideas:

You could spice up the display a little. The static image of Karel seems a bit tame here.
You could animate the pictures. Be creative!
Allow the user to play multiple games.

Once you get the basic structure working, you could expand the program to play
something like Wheel of Fortune, in which the single word is replaced by a common
phrase and in which you have to buy vowels

You could write an A L. agent that plays the game for the user. One common strategy is
to guess the most frequent letter. After loading words from the lexicon, find out which
letters come up most often.

Use your imagination!

