Sarai Gould & Laura Cruz-Albrecht Assignment 5
CS 106A July 29,2019

Assignment #5 —ImageShop
Due: 10AM PST on Monday, August 5

This assignment may be done in pairs (which is optional, not required)

Based on handouts by Marty Stepp, Eric Roberts, Keith Schwarz and Nick Troccoli with additions by Brahm Capoor

You’ve probably had occasion to use some sort of image-editing software, whether it is Adobe
Photoshop™, Adobe Illustrator™, online image editing tools, or others. In this assignment, you
will build a simple version of one of these image editors that implements several useful operations.

@ @® DarkRoom

Loaded image VanGo;

Load Image
Save Image
Overlay Image

Compare To Image

Rotate Left
Rotate Right
Flip Horizontal
Negative
Green Screen
Blur
Crop

Equalize

(x=203, y=244) (R=132, G=173, B=136)

The purpose of this assignment is to practice using arrays (1D and 2D) in your programs to
manipulate images. We provide you with a completed GraphicsProgram called ImageShop.java
that contains all of the user interaction behavior; you have to write the image manipulation
algorithms in a file named ImageShopAlgorithms.java.

This assignment may be done in pairs, or may be done individually. You may only pair up with
someone in the same section time and location. If you work as a pair, comment both members’
names on top of every .java file. Make only one assignment submission; do not turn in two
copies.

In general, limit yourself to using Java syntax taught in lecture and textbook parts we have read so
far. If you would like to implement any extensions, please implement them in separate files or
make a separate submission. Clearly comment what extensions you have implemented.

Note that this assignment is not as long as this handout implies — there are simply many included
screenshots for each image algorithm! Please also see the Demo JAR posted on the course
website, which provides a way to play around with a completed version of the program.

2
Output Comparison

For this assignment, there is a built-in output comparison tool to check your output. In ImageShop,
to compare the displayed image to a particular image file, click “Compare To Image” and select
an image to compare it to. A window will pop up comparing the pixels in those images:

Expected [, Acal

(0 pixels differ) Highlight diffs in color: | X

(48, 108) expected: #85d7ee actual: #85d7ee

In the starter project’s res/ folder, we include sample images with which to test your algorithms
(or you may add your own). In the output/ folder, we include sample output images for the filters
you will implement. Please see the Demo JAR posted on the course website for more sample
output.

ImageShop Overview

As mentioned previously, the starter project contains a completed ImageShop.java file that
displays and handles all onscreen buttons, controls, saving and loading images, and more. Your
work will be in ImageShopAlgorithms.java, where we have left blank methods for each of the
image algorithms you must implement. Specifically, each one accepts a GImage parameter
representing the current onscreen image, and should create and return a new GImage of that image
after that algorithm has been applied. As a reminder, if you have a 2D array of pixels named
pixels, you can create a new GImage with those pixels by saying

GImage image = new GImage(pixels);

You will implement the following image manipulation algorithms:

negative Inverts the colors of an image

greenScreen Removes green pixels so the image can be overlaid on another image
rotateLeft Rotates the pixels 90° counterclockwise from their current state
rotateRight Rotates the pixels 90° clockwise from their current state
flipHorizontal Flips the pixels horizontally (across an imaginary centered vertical line)
crop Reduces size of image by removing portions of its outer regions

blur Averages pixel values with neighbors to produce a “softening” effect
equalize Spreads out pixel intensities to increase contrast

Each algorithm is described in detail on the following pages. Your algorithms should rot use
any instance variables; each algorithm can be solved on its own without these. Each algorithm
should work on any image of any size, including very large images or very small images such as
1x1 pixels, etc. When describing the algorithms we may refer to pixels in the format (7, g, b) such
as (24, 191, 65) to indicate a pixel with a red component of 24, green of 191, and blue of 65.

General Note

You can access the individual components of a single pixel value, and make a new pixel value, by
doing the following:

// get pixel, e.g. from pixelArray
int pixel = ...

// get individual color components of this pixel
int redValue = GImage.getRed(pixel);

int greenValue = GImage.getGreen(pixel);

int blueValue = GImage.getBlue(pixel);

int alphaValue = GImage.getAlpha(pixel);

// make a new pixel value (with values r, g, b)

int newRed = ...;
int newGreen = ...;
int newBlue = ...;

int newPixel = GImage.createRGBPixel (newRed, newGreen,
newBlue) ;

Algorithm #1: Rotate Left

In this method you should create a new image whose pixel positions are rotated 90-degrees
counter-clockwise relative to those in the source image.

—>

smiley-face png smiley-face-
rotateleft.png
For example, the diagram below shows a source image of size 6x4 rotated left to create a result
image of size 4x6; the pixels are indicated by letters just for illustration. Note that the source
image's width may be different from its height, and that the dimensions of the result image reflect
the rotation you have performed; the result image is as wide as the source was tall, and as tall as
the source was wide.

before rotateLeft after
e 1 2 3 4 5 e 1 2 3
®© A B C D E F ® F L R X
1 G H I J K L --> 1 E K Q W
2 M N O P Q R 2 D J P V
3 S T UV W X 3 C I o U
4 B H N T
5 AG M S

4 -
Algorithm #2: Rotate Right

In this method you should create a new image whose pixel positions are rotated 90-degrees
clockwise relative to those in the source image.

—>

smiley-face png smiley-face-
rotateright.png
For example, the diagram below shows a source image of size 6x4 rotated right to create a result
image of size 4x6; the pixels are indicated by letters just for illustration. Note that the source
image's width may be different from its height, and that the dimensions of the result image reflect
the rotation you have performed; the result image is as wide as the source was tall, and as tall as
the source was wide.

before rotateRight after

e 1 2 3 4 5 e 1 2 3

@ A B C D E F o S M G A

1 G H I J K L -=> 1 T N H B

2 M N O P Q R 2 U 0O I C

3 S T UV W X 3 v P 3 D
4 W Q K E
5 X R L F

Algorithm #3: Flip Horizontal

In this method you should create a new image whose pixel positions are flipped across an
imaginary vertical centered line through the image.

——>

smiley-face png smiley-face-flip-
horizontal png
For example, the diagram below shows a source image of size 6x4 flipped horizontally to create a
result image of size 6x4; the pixels are indicated by letters just for illustration. Note that the source
image's width may be different from its height, and that the dimensions of the result image should
always be the same as the source image. Additionally, flipping an image horizontally twice should
return it to its original form.

before flipHorizontal after

@ 1 2 3 45 @ 1 2 3 45
© AB CDEF © F EDCBA
1 GHTI J KL 1 LK JTIMHG
2MNOPQR > 2RQPONM
3 STUVWX 3 X WV UTS

Algorithm #4: Negative

In this method you should create a new image whose pixels are the inverse of those in the source
image. To convert an image to its inverse, for each pixel, set all three of its red, green, and blue
values to be the inverse of their current color value. The inverse of a color value k is defined as
255 - k. For example, the pixel (110, 52, 236) has an inverse of (145,203, 19).

=

smiley-face png smiley-face-
negative png

Algorithm #5: Green Screen

Green Screen implements an operation that is used frequently in movies to merge actors into a
background scene. The technique uses a particular range of colors (such as green) to represent a
background that can later be made transparent via software. The most common colors are green
and blue (which give rise to the more specific names green screen and blue screen) because those
colors are most easily differentiated from flesh tones.

ReyGreenScreen.png Rey-after-GreenScreen.png

Your task in this method is to create a new image whose pixels are the same as those of the source
image, but with any green pixels converted to transparent ones (the image above at right has a
transparent background). Since the green pixels in an image will rarely be precisely equal to Java’s
Color.GREEN, you should treat a pixel as green if its green component is at least twice as large
as the maximum of its red and blue component. For example, if the red component is 23, and
the blue component is 42, the green component must be at least 84 for it to be considered “green”.
The Math.max method may come in handy here; it takes 2 numbers as parameters and returns
the larger one:

int bigger = Math.max (23, 42); // returns 42

To create a transparent pixel, you need to specify a fourth value stored inside a pixel (alongside
its RGB values), called the alpha value (between 0 and 255). An alpha of 0 means the pixel is
completely transparent and will show whatever is beneath it. An alpha of 255 (the default) means
the pixel is completely opaque and will show just the RGB color it stores. Values in between are

—_6—

partially transparent. Luckily, GImage.createRGBPixel lets you optionally specify the
alpha as a 4™ parameter:

// completely transparent (1, 1, 1) pixel
int transparentPixel = GImage.createRGBPixel(1l, 1, 1, 0);

// completely opaque (1, 1, 1) pixel (no alpha required)
int opaquePixel = GImage.createRGBPixel(1l, 1, 1);
Once an image has been ‘“green-screened”, you can overlay it on top of another image. For

example, we can take our Rey-after-GreenScreen.png image and put it on top of
MilleniumFalcon.png to look like this:

ReyMilleniumFalcon.png

To do this, first run the Green Screen algorithm on an image, and save it to a file. Then, load in
the background image you would like to use. Next, click “Overlay Image” to overlay the green-
screened image on top. Select a previously-saved green-screened image, and it will be added on
top of your chosen background.

Algorithm #6: Blur

In this method you should implement a filter to blur an image. One way to do this is to create a
new image whose pixel values are averaged with the values of their immediate neighbors from the
source image; this simulates a “blurring” effect between pixels.

blur x 1
smiley-face png smiley-face-
blur png
blur x 10

——>

smiley-face png smiley-face-blur-
10x.png

The general idea is that for a given pixel (7, ¢) located at row r and column c in the source image,
you will change its red, green, and blue components to be the average (rounded down to the nearest
integer) of the nine red, green, and blue components in the pixels at locations (r-1, c-1) through
(r+1, c+1). For example, in the diagram below, the pixel (row 1, column 2) should be modified
to store the average of the nine pixels (0, 1), (0, 2), (0, 3),(1,1),(1,2),(1,3),(2,1),(2,2),and (2,
3). These are the eight neighbors of (1,2) as well as (1, 2) itself. So the red part of (1,2) would be
changed from 32 to (84+74+16+66+32+95+28+47+31)/9 = 52. The green component would be
changed from 67 to (224+38+17+53+674+65+49+214+41)/9 = 41. The blue component would be
changed from 12 to (99+69+18+88+12+35+31+94+51)/9 = 55. Therefore the overall pixel value
at (1, 2) in the result image would be (52, 41, 55).

0 1 2 3 4
(14,97,63) (84,22,99) |(74,38,69) (16,17,18) (85,75, 75)
(21,18,45) (66,53,88) (32,67,12) (95,65,35 (6,0,2)
(37,29,61) (28,49,31) |(47,21,94) (31,41,51) (246, 84, 13)
(82,33,90) | (42,43,44) [(15,80,50) (60,40,12) (188,45, 1)

W N N O

A special case is the set of pixels along the edges of the image. When blurring those pixels, they
do not have eight neighbors like other pixels do, so the average includes fewer data points. For
example, in the diagram above, the pixel at (0, 0) has no neighbors above or left of it, so it should
become the average of the four pixels (0, 0), (0, 1), (1,0), and (1, 1). So the red component of (0,
0) would become (14+84+21+66)/4 = 46, and so on. The pixel at (3, 3) has no neighbors below it,
so it should become the average of the six pixels (2, 2), (2, 3), (2,4),(3,2),(3,3),and (3,4). The
red component of (3, 3) would become (47+31+246+15+60+188)/6 = 97, and so on. Take care
that your algorithm does not crash by trying to access outside the bounds of the array.

A common bug in this algorithm is to try to modify the pixel array in-place. You should not do
this; you should create a new second pixel array to store the result image's pixels. The reason is
because you don't want modifications made to one pixel to impact another pixel in the same pass
over the array. In our previous example, we already stated that pixel (1, 2) should be changed from
(32,67,12) to (52,41, 55). But if you store (52,41, 55) into this pixel and then use that value for
further calculations on pixels in the same pass over the array, their averages will be incorrect. For
example, when computing the average for pixel (1, 3), the pixel (1, 2) is one of its neighbors. But
you should use that pixel's original value of (32, 67, 12) when computing that average.

Algorithm #7: Crop

Cropping is the process of reducing the size of an image by removing particular portions of its
outer regions. In ImageShop, a user can crop an image by dragging a rectangular box around the
part of the image they wish to preserve and clicking the “Crop” button.

ece DarkRoom [XoX) DarkRoom
Loaded image Val

Crop filter applied.

Load Image Load Image

Save Image Save Image
Overlay Image Overlay Image

Compare To Image Compare To Image

Rotate Left Rotate Left

Rotate Right Rotate Right
Flip Horizontal Flip Horizontal
Crop Crop
Scale Scale
Negative Negative
Green Screen Green Screen
Equalize Equalize

(x=27,y=192) R=107, G=128, B=135) (x=5, y=261) (R=104, G=199, B=194)

Your job is to implement the following method:

public GImage crop(GImage source, int cropX, int cropY, int cropWidth, int cropHeight);

which takes in as a parameter a GImage as well as 4 parameters that specify the cropped region.
Specifically, the first pair of these parameters (namely cropX and cropy) are the coordinates of
the top left corner of the cropped region in the original image. and the latter pair are the width and
height of the region. For example, if you had a GImage named picture whose pixel array looked
like this:

01 02 03 05 05
06 07 08 09 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 28 30

and you were to call crop (picture, 2, 3, 3, 2),your method would return a GImage with the
following pixel array:

18 19 20
23 24 25

Note that the pixel in the top left corner of the cropped region (with the value 18) has an x-
coordinate of 2 and a y-coordinate of 3 in the original image, and that the cropped region itself has

—9_

a width of 3 pixels and a height of 2 pixels. You can safely assume that the cropped region fits
entirely within the original image.

Algorithm #8: Equalize

Digital processing can do an amazing job of enhancing a photograph. Consider, for example, the
countryside image below at left. Particularly when you compare it to the enhanced version on the
right, the picture on the left seems hazy. The enhanced version is the result of applying an
algorithm called histogram equalization, which grayscales the image and spreads out the
intensities to increase its effective contrast and make it easier to identify individual features.

R e T
- QAM,“ D,
g :

equalize

C ountside-equalized png

Countryside png

(http:/len.wikipedia.org/wiki/File:Unequalized_Hawkes_Bay_NZ.jpg)

Histogram equalization takes advantage of the fact that the human eye perceives some colors as
brighter than others, similar to how it perceives tones of certain sound frequencies as louder than
others. Green, for example, appears brighter than red or blue, which tend to make images appear
darker. Your job is to implement the histogram equalization algorithm, which can be broken down
into the following steps, each of which is well-suited to be decomposed into its own method:

1) Compute the luminosity histogram for the source image
2) Compute the cumulative luminosity histogram from the luminosity histogram
3) Use the cumulative luminosity histogram to modify each pixel to increase contrast

Computing the Luminosity Histogram

To compute the luminosity histogram of the source image, we need to first define luminosity.
Luminosity is a standardized calculation of the “brightness” of a pixel based on its RGB values.
It is described on page 439 of The Art and Science of Java, and was also mentioned briefly in class
with our grayscale example. The luminosity is an integer between 0 and 255, just as the intensity
values for red, green, and blue are. A luminosity of O indicates black, a luminosity of 255 indicates
white, and any other color falls somewhere in between. There is a provided method called
computeLuminosity that you can use in ImageShopAlgorithms.java that takes RGB
values for a pixel and returns its luminosity for those values.

int luminosity = computeLuminosity(red, green, blue);

Now, we want to compute the luminosity histogram of the source image, which represents the
distribution of brightness in the source image. Specifically, it’s an array of 256 integers — one for
each possible luminosity value — where each entry in the array represents the number of pixels in
the image with that luminosity. For example, the entry at index O of the array represents the

— 10—

number of pixels in the image with luminosity O, the entry at index 1 represents the number of
pixels in the image with luminosity 1, and so on.

]

Image source: http://anseladams.com/wp-content/uploads/2012/03/1901006-2-412x300. jpg

Visualization of two images’ luminosity histograms.

An image’s luminosity histogram says a lot about the distribution of brightness throughout the
image. The example above shows the original low-contrast picture of the countryside at the top,
along with its image histogram. The bottom row shows an image and histogram for a high-contrast
picture. Images with low contrast tend to have histograms more tightly clustered around a small
number of values, while images with higher contrast tend to have histograms that are more spread
out throughout the full possible range of values. We will eventually use this histogram to modify
images to spread their brightness distributions out to be more like the lower image.

Compute the Cumulative Luminosity Histogram

Now we need to take the luminosity histogram from the previous step and from it create the
cumulative luminosity histogram, which is useful later in the algorithm. The cumulative
luminosity histogram is the same size as the regular luminosity histogram; it’s also an array of 256
integers, one for each possible luminosity value. However, instead of each entry in the array
representing the number of pixels in the image with that luminosity, each entry represents the
number of pixels in the image with that luminosity or less. For example, the entry at index 2 of
the array represents the number of pixels in the image with luminosity O, 1 or 2, the entry at index
3 represents the number of pixels in the image with luminosity 0, 1, 2 or 3, and so on. As an
example, if the first six entries in the image histogram were

o 1 2 3 4 5

[tf3[s7]ofu]

the corresponding cumulative histogram would be
o 1 2 3 4 5

\1\4\9\16\25\36\

—11 -

As an example, the value at index 3 is 16 because 1+3+5+7 pixels have a luminosity of 3 or less.

N = ¥ ~ 2 v =

Visualization of two images’ luminosity histograms.

An image’s cumulative luminosity histogram says a lot about the distribution of brightness
throughout the image. Notice how the low-contrast image at the top has a sharp transition in its
cumulative luminosity histogram, representing the smaller distribution of luminosity values.
Meanwhile, the normal-contrast image on the bottom has a smoother increase over time. We will
eventually use this histogram to modify images to spread their brightness distributions out to be
more like the lower image.

Modify Each Pixel To Increase Contrast

Now that we have the cumulative luminosity histogram, we can use it to modify each pixel to
increase the image’s overall brightness and contrast. The key is that we want to modify the image
to spread its luminosity values across as much of the range of possible luminosity values as
we can. We can do this via the following steps:

For each pixel in the source image:

Compute the pixel’s luminosity

pixels with luminosity < this pixel’s luminosity

new R, G,and B values = 255 x :
total pixels

Modify the pixel at this location to be a grayscale pixel with the above RGB values

To understand how this works, suppose you had a low-contrast 10-pixel image with luminosities
only between 125-130. The cumulative histogram for this example image could be as follows:

125 126 127 128 129 130

_ 12—

(0t]3]s]7[9]1w0]0 |
To make this image higher contrast, we want to spread these luminosities out so they occupy more

of the range of luminosity values than just 125-130; this will result in more variation among pixel
luminosities, and thus a better image.

For example, let’s take the pixel with luminosity 125. In our cumulative histogram above, there
is only 1 total pixel (this one) with luminosity < 125. Therefore, the percentage of pixels with that
luminosity or less is 1/10 = 10%. Ideally, this pixel would be 10% bright, to use as much of the
luminosity spectrum as possible. The value that achieves this is 10% of 255 (the maximum
luminosity), or 25.5. Thus, we want this pixel to have a luminosity of 25 (round down). One
property of luminosity is that, if the R, G and B values of a pixel are the same, the luminosity is
just this value. Therefore, we can change the pixel at this location to be a grayscale pixel with an
R, G, and B value of 25. Thus, for each pixel we calculate the percentage of pixels with that
luminosity or less, and multiply this by 255 to get a new luminosity for that pixel, which we use
for its R, G and B values.

As another example, let’s take a pixel with luminosity 129. In our cumulative histogram above,
there are 9 pixels with luminosity < 129. Therefore, the percentage of pixels with that luminosity
or less is 9/10 = 90%. Ideally, this pixel would be 90% bright, to use as much of the luminosity
spectrum as possible. The value that achieves this is 90% of 255, or 229.5. Thus, we want this
pixel to have a luminosity of 229 (round down). We therefore change the pixel at this location to
be a grayscale pixel with an R, G, and B = 229.

Notice how a luminosity of 125 is mapped to a new luminosity of 25, and a luminosity of 129 is
mapped to a new luminosity of 229; this dramatically expands the range of luminosity values in
the image, resulting in higher contrast and better detail.

Possible Extensions

There are many possibilities for optional extra features that you can add if you like, potentially for
a small amount of extra credit. If you are going to do extra features, submit extra files containing
your extended version (ImageShopAlgorithmsExtra.java, ImageShopProgramExtra.java,
etc.). At the top of your .java file in its comment header, you must comment what extra features
you completed. Here are a few ideas:

¢ Painting tools: add drawing tools like a paint brush, line drawing, a touch-up tool, etc.

e Other filters: add other filters that interest you, such as red-eye reduction or “posterize”
(Shepard Fairey’s iconic design of President Obama’s 2008 campaign poster, which
converted all pixels to the closest equivalent chosen from a highly restricted set of colors).

e Other: use your imagination! What other features could you imagine in a program like
this?

— 13 =
Grading

Functionality: Your code should compile without any errors or warnings. We use the Image
Comparison Tool mentioned on page 1 to see that your image exactly matches the one expected.

Style: Follow style guidelines taught in class and listed in the course Style Guide. For example,
use descriptive names for variables and methods. Format your code using indentation and
whitespace. Avoid redundancy using methods, loops, and factoring. Use descriptive comments,
including at the top of each .java file, atop each method, inline on complex sections of code, and
a citation of all sources you used to help write your program. If you complete any extra features,
list them in your comments to make sure the grader knows what you completed. In general, limit
yourself to using Java syntax taught in lecture and textbook parts we have read so far.

As mentioned earlier, you should not use any instance variables to implement the required
parts of this assignment.

Decomposition: Most of the methods you’ll need to write on this assignment are already specified
for you, but you should still work to avoid redundancy. For example, if two or more specified
methods have similar behavior, make one call the other, or make a private method that captures
the redundancy and is called by both. In particular, for Equalize, we highly recommend breaking
down the logic into multiple private methods.

Honor Code: Follow the Honor Code when working on this assignment. Submit your own work
and do not look at others' solutions (outside of your pair, if you are part of a pair). Do not give
out your solution. Do not search online for solutions. Do not place a solution to this assignment
on a public web site or forum. Solutions from this quarter, past quarters, and any solutions found
online, will be electronically compared. If you need help on the assignment, please ask.

