
Sarai Gould & Laura Cruz-Albrecht Assignment 6
CS 106A August 5, 2019

Assignment #6—NameSurfer
Due: 10AM PST on Tuesday, August 13

This assignment may be done in pairs (which is optional, not required)
Note: No late days (free or otherwise) may be used on this assignment

Created by Nick Parlante; revised by Chris Piech, Nick Troccoli, M Stepp, P Young, E Roberts, M Sahami, K Schwarz and B Capoor.

Sandcastle: Election Results

It’s election season at Stanford! You’ve been given a ArrayList of Strings representing
all the votes by the Stanford community for student president. For example, this ArrayList
might look like this:

{“Zaphod Beeblebrox”, “Arthur Dent”, “Trillian McMillian”, “Zaphod
Beeblebrox”, “Marvin”, “Mr. Zarniwoop”, “Trillian McMillian”, “Zaphod
Beeblebrox”}

In this list, each element represents a single person’s choice of candidate for president.
Note that the list can be of any positive length and that there can be an arbitrary number of
candidates, although each candidate will have a unique name.

Your task is to write the following method:

private void printVoteCounts(ArrayList<String> votes)

that takes in a list such as the one above and outputs the number of votes that each candidate
received. For example, given the list above, the program would output the results displayed
on the right. You may output the votes per candidate in any order.

 – 2 –

NameSurfer

NameSurfer is a program that graphs the popularity of US baby names from 1900 through
2000. It lets the user analyze interesting trends in baby names over time, and gives you
practice with classes, data structures and interactors to create a large-scale application.

Figure 1. Sample run of the NameSurfer program (with names "Sam" and "Samantha")

You will work in the following files: NameSurfer.java, NameSurferEntry.java, and
NameSurferDatabase.java. We provide a completed demo program on the course
website. Additionally, there is a built-in output comparison tool to check your output. If
you click File -> Compare Output…, you can compare the image displayed on your graph
with provided sample output images in the output/ folder. You can also save output from
the demo to compare to by going to File->Save.

This assignment may be done in pairs, or may be done individually. You may only pair
up with someone in the same section time and location. If you work as a pair, comment
both members’ names on top of every .java file. Make only one assignment submission;
do not turn in two copies.

 – 3 –

Overview
Every year, the Social Security Administration releases data about the 1000 most popular
names for babies born in the US at http://www.ssa.gov/OACT/babynames/. The data
can be boiled down to a single text file that looks something like this:

names-data.txt
. . .

Sam 58 69 99 131 168 236 278 380 467 408 466
Samantha 0 0 0 0 0 0 272 107 26 5 7
Samara 0 0 0 0 0 0 0 0 0 0 886
Samir 0 0 0 0 0 0 0 0 920 0 798
Sammie 537 545 351 325 333 396 565 772 930 0 0
Sammy 0 887 544 299 202 262 321 395 575 639 755
Samson 0 0 0 0 0 0 0 0 0 0 915
Samuel 31 41 46 60 61 71 83 61 52 35 28
Sandi 0 0 0 0 704 864 621 695 0 0 0
Sandra 0 942 606 50 6 12 11 39 94 168 257
. . .

Each line of the file begins with the name, followed by the rank of that name in each of the
11 decades since 1900: 1900, 1910, 1920, and so on, up to 2000. A rank of 1 indicates the
most popular name that year, while a rank of 997 indicates a name that is not very popular.
A 0 entry means the name did not appear in the top 1000 names for that year. The elements
on each line are separated from each other by a single space. The lines happen to be in
alphabetical order, but nothing in the assignment depends on that fact.

As you can see from the small file excerpt above, the name Sam was #58 in the first decade
of the 1900s and is slowly moving down. Samantha popped on the scene in the 1960s
(possibly because the show Bewitched, which had a main character named Samantha, ran
on television during those years) and is moving up strong to #7. Samir barely appears in
the 1980s (at rank #920), but by 2000 is up to #798. The database counts children born in
the United States, so trends tend to reflect the evolution of ethnic communities over time.

The goal of this assignment is to create a program that graphs these names over time, as
shown in the sample run in Figure 1. In this diagram, the user has just typed Samantha
into the box marked “Name” and then clicked on the “Graph” button, having earlier done
exactly the same thing for the name Sam. Whenever the user enters a name, the program
creates a new plot line showing that name’s popularity over the decades. Clicking on the
“Clear” button removes all the plot lines from the graph so that the user can enter more
names without all the old names cluttering up the display.

To give you more experience working with classes that interact with one another, the
NameSurfer application as a whole is broken down into several class files, as follows:

• NameSurfer—This is the main program class that ties together the application. It
has the responsibility for creating the other objects, for drawing the display and for
responding to the interactors at the top of the window.

• NameSurferEntry—This class ties together all the information for a particular
name. Given a NameSurferEntry object, you can find out what name it
corresponds to and what its popularity rank was in each decade.

 – 4 –

• NameSurferDatabase—This class keeps track of all the information stored in the
data files, but is completely separate from the user interface. It is responsible for
reading in the data and for locating the data associated with a particular name.

• NameSurferConstants (provided)—This interface is provided for you and defines
a set of constants that you can use in the rest of the program simply by having your
classes implement the NameSurferConstants interface, as they do in the starter
files. You should use these constants when appropriate and your program should
respond accordingly if their values are changed.

In each of these classes, you must implement certain public methods as outlined in the
milestones below. In the starter code, all of these methods are already included as stubs.
Stubs are methods that will eventually become part of the program structure but that are
temporarily unimplemented. They play a very important role in program development
because they allow you to set out the structure of a program even before you write most of
the code. As you implement the program, you can go through the code and replace stubs
with real code as you need it.

You may add extra private methods if you would like, but you may not add any public
methods other than the ones specified in the milestones below.

Part of writing code with good style on this assignment is properly separating
responsibilities between these classes as outlined below, and choosing the appropriate
data structure(s) to use. Even though the class structure sounds complicated, the scale of
the project is comparable to previous assignments. That being said, we encourage you to
get started early and use the following milestones.

Milestone 1: Interactors
Your first milestone is to add the interactors to the window to detect button clicks and read
what’s in the text field. If you look at the top of Figure 1, you will see that the region along
the NORTH edge of the window contains the following interactors, from left to right:

• A JLabel with the text “Name: ”.
• A TEXT_FIELD_WIDTH wide JTextField, initially blank, for typing in names.
• A JButton labeled “Graph”. Clicking this button (or pressing ENTER on the text

field) should cause the program to graph the ranking data for the currently typed
name.

o The program is case-insensitive; “lisa”, “LISA” or “LiSa” should all
correctly graph “Lisa”.

o If there is no ranking data about that name, the program should not add a
new plot line, but existing plot lines should remain displayed.

• A JButton labeled “Clear”. Clicking this button should cause the program to clear
all graphed name data.

The simplest strategy to check whether your program is working is to change the definition
of the NameSurfer class so that it extends ConsoleProgram instead of GraphicsProgram,
at least for the moment. You can always change it back later. Once you have made that
change, you can then use the console to record what’s happening in terms of the interactors

 – 5 –

to make sure that you’ve got them right. For example, Figure 2 shows a possible transcript
of the commands used to generate the output from Figure 1, in which the user has just
completed the following actions:

1. Entered the name Sam in the text field and clicked the Graph button.
2. Entered the name Samantha in the text field and then typed the ENTER key.
3. Clicked the Clear button.

Figure 2. Illustration of Milestone 1

Milestone 2: Implement the NameSurferEntry class
The next step is to define a new type of object called a NameSurferEntry that will help
you manage the baby name data. Specifically, each NameSurferEntry object represents
the information pertaining to one name in the database. That information is:

1. The name itself, such as "Sam" or "Samantha"
2. A list of 11 values indicating the rank of that name in each of the decades from

1900 to 2000, inclusive

Within the class, you are required to implement the following constructor and methods:

public NameSurferEntry(String dataLine)

In this constructor you should initialize the state of a new entry from the given line of data.
You should assume that the line of data is from the names-data.txt file shown previously,
such as:

Sam 58 69 99 131 168 236 278 380 467 408 466

The constructor should divide up the line of data and store the information appropriately
in the new object such that it is easy for the getName and getRank methods (see below) to
return the appropriate values.

public String getName()

 – 6 –

In this getter method, you should return the entry’s name as it was read from the input data
passed in when it was created. For example, given the example line in the constructor
description above, getName would return "Sam".

public int getRank(int decadesSince1900)

In this method, you should return the entry’s ranking for the given number of decades after
1900. For example, given the example line in the constructor description above,
getRank(0) would return 58 because the rank for 1900 is 58, and getRank(9) would
return 408 because the rank for 1990 is 408. If the number passed in is outside the valid
number of decades, you should return -1.

public String toString()

In this method, you should return a human-readable string representation of that entry’s
data. The format must list the person’s name followed by a space and a list of their
rankings, separated by commas. For example, the NameSurferEntry for Sam would return
the following string:

Sam [58, 69, 99, 131, 168, 236, 278, 380, 467, 408, 466]

To help you implement this milestone, we encourage you to write a very simple test
program (either in NameSurferEntry.java or in a new ConsoleProgram you create) that
creates entries from specific strings and verifies that all methods work as intended.

Milestone 3: Implement the NameSurferDatabase class
The next step is to define a new type of object called a NameSurferDatabase that will
manage the entire database of baby names. Within the class, you are required to implement
the following constructor and method:

public NameSurferDatabase(String filename)

In this constructor, you should initialize the state of a new database and read in the data
from the given data filename such that all the data is stored within the database object and
can be easily returned as needed from the findEntry method (see below).

public NameSurferEntry findEntry(String name)

This method takes a name, looks it up in the database (note that this method should be case-
insensitive; the name can be passed with any capitalization) and returns the
NameSurferEntry for that name, or null if that name does not appear.

For this class, think about different ways you can store data within the database using
variable types we have discussed, and which might be the most appropriate here given the
structure of the data and what the database needs to do with it.

 – 7 –

To test this part of the program, you can add a little code to the NameSurfer program so
that it creates a NameSurferDatabase, and then change the code for the interactors so that
clicking the “Graph” button (or pressing ENTER in the text field) looks up the current
name in the database and then displays the corresponding entry (using its toString
method), as shown in Figure 4 below.

Figure 4. Illustration of Milestone 3

Milestone 4: Draw the background of the graph
The next step in the process is to continue the implementation of the NameSurfer class,
which is responsible for both handling interactions and displaying the graph in the
window. In this milestone, our goal is to draw the decade lines and labels that make up the
background of the graph.

The starter file includes a tiny bit of code that monitors the size of the window and calls
the redraw method whenever the size changes. This code requires only a couple of lines
to implement, but would be hard to explain well enough for you to implement on your own.
Writing a page of description so that you could add a couple of lines seemed like overkill,
particularly given that the strategy is easiest to learn by example.

To start the process of adding the graphing code, go back to the NameSurfer class and
change its definition so that it extends GraphicsProgram rather than the temporary
expedient of extending ConsoleProgram. At the same time, you should remove any test
code from the earlier milestones.

If you run the program with only these changes, it won’t actually display anything on the
screen. To create a visual, start by implementing the redraw method, which will almost
certainly involve defining private helper methods as well. As a first step, write the code to
create the background grid for the graph, as follows:

• There should be a GRAPH_MARGIN_SIZE sized margin area on the top and bottom of
the graph (so that the year labels are always visible)

 – 8 –

• For each decade, draw a vertical line from the top of the window to the bottom.
The lines should start at the left edge of the window and be evenly-spaced to fill
the entire width of the graph.

• For each decade, add a decade label that displays that year as a string in the bottom
margin area. The labels should be positioned such that their x coordinates are the
same as their corresponding decade line, and their y coordinates should be such that
the label baseline is DECADE_LABEL_MARGIN_SIZE from the bottom of the screen.

Milestone 5: Complete the Name Surfer program
In addition to creating the background grid, the redraw method in NameSurfer also has to
plot the actual data values.

You will need to link both buttons (Graph and Clear) to change what data values get
displayed. Improtantly, both button clicks should call the redraw method, which deletes
any existing GObjects from the canvas and then assembles everything back up again.

At first glance, this strategy might seem unnecessary. It would, of course, be possible to
have the Graph action listener just add all of the GLines and GLabels necessary to draw the
graph. The problem with that approach is that it would no longer be possible to reconstruct
the entire graph, since redraw is the only method called when the screen size changes. By
storing all of the displayed entries somehow within NameSurfer, the NameSurfer class can
redraw everything when redraw is invoked from the componentResized method.

There are a couple of points that you should keep in mind while implementing this
milestone:

• To make the data easier to read, the lines on the graph are shown in different colors.
The first data entry is plotted in black, the second in red, the third in blue, and the
fourth in magenta. After that, the colors cycle around again through the same
sequence.

• The x-coordinates of each line’s segments start and end at the vertical grid lines
for those decades.

• The y-coordinates should be calculated such that rank 1 is at the top of the graph
area, and the max rank at the bottom of the graph area. All other ranks should be
evenly-spaced in between.

• On each year for which there is data, also draw a ranking label next to the endpoint
of the line that displays that entry’s name and ranking for that year. The label’s
color should match the line’s color. The x-coordinate of the ranking label is the
same as the x-coordinate of that decade’s vertical line, and the y-coordinate is the
same as the y-coordinate of that corresponding year’s plot line segment.

• One special case is a rank of 0, which should be drawn at the bottom of the graph
area, like the maximum rank. Additionally, in its ranking label, you should list an
asterisk instead of the numeric rank. You can see several examples of this in the
data for “Samantha” in Figure 1, and in the provided demo JAR.

 – 9 –

If you are having trouble getting the right coordinates for your lines or labels in your graph,
try printing the x/y coordinates to verify them. You can’t generally use println statements
in classes other than your main program; however, if you use System.out.println
instead, you will see the printed messages in the bottom Eclipse console.

Optional Extra Features
There are many possibilities for optional extra features that you can add if you like,
potentially for a small amount of extra credit. If you are going to do this, please submit
two versions of your program: one that meets all the assignment requirements, and a second
extended version (see the FAQ on the Eclipse page for how to create new files in your
project). At the top of your extended files, in your comment header, you must comment
what extra features you completed. Here are a few ideas:

• Add features to the display. The current display contains lines and labels, but could be
extended to make it more readable. You could, for example, put a dot at each of the data
points on the graph. You could also choose different symbols for each line so that the
data would be easily distinguishable even in a black-and-white copy. For example, you
could use little circles for the first entry, squares for the second, triangles for the third,
diamonds for the fourth, and so on. You might also figure out what the top rank for a
name is over the years and set the label for that data point in boldface.

• Allow deletion as well as addition. Because the screen quickly becomes cluttered as you
graph lots of names, it would be convenient if there were some way to delete entries
individually, as opposed to clearing the entire display and then adding back the ones you
wanted. The obvious strategy would be to add a “Delete” button that eliminated the
entry corresponding to the value in the “Name” box. If you do this, however, it comes
with a challenge: you need to make sure that, if you added a bunch of entries to the
graph and then deleted the early ones, the colors of the later entries remain the same.

• Try to minimize the overprinting problem. If the popularity of a name is improving
slowly, the graph for that name will cross the label for that point, making it harder to
read. You could reduce this problem by positioning the label more intelligently. If a
name were increasing in popularity, you could display the label below the point;
conversely, for names that are falling in popularity, you could place the label above the
point. An even more challenging task is to try to reduce the problem of having labels
for different names collide, as they do for Sam and Samantha in Figure 1.

• Adjust the font size as the application size changes. One of the wonderful features of
this program is that it redraws itself to fill the available space if you change the size of
the window. If you make it too small, however, the labels run together and become
unreadable. You could eliminate this problem by choosing a font size that allows each
label to fit in the space available.

• Plot the data differently. Right now, your program visualizes the data by showing its
popularity over time. What other information about the names could you display?
Consider plotting the rate of change over time, the correlation of various names, or other
interesting trends that aren’t apparent purely through their popularity.

