
Mouse Events and Instance Variables

CS106A, Summer 2019
Sarai Gould && Laura Cruz-Albrecht

Lecture 10

With inspiration from slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, Chris Piech, Brahm Capoor and others.

Announcements

● HW2 was due at 10AM today
● HW 3 goes out today after lecture

○ Due Thursday July 18 at 10AM
○ Can optionally be done in pairs; check out the Pair Programming

link on website

2

http://web.stanford.edu/class/cs106a/assignments/pair.html

3

HW 3:

Plan for Today

● Review: Animation & Randomness
● getElementAt & Null
● Event-driven Programming
● Instance Variables
● Whack-a-Mole

4

Plan for Today

● Review: Animation & Randomness
● getElementAt & Null
● Event-driven Programming
● Instance Variables
● Whack-a-Mole

5

Review: Animation Loop

6

public void run() {

// setup

Make variables. Add graphics to canvas.

while (condition) {

// update world

Update graphics.

// pause

pause(milliseconds);

}

}

Review: Animation Loop

7

public void run() {

// setup

GRect square = makeSquare();

while (true) {

// update world

square.move(1, 0);

// pause

pause(PAUSE_TIME);

}

}

Review: RandomGenerator

8

// this variable can generate random values

RandomGenerator rgen = RandomGenerator.getInstance();

// make a random number between 1 and 6 inclusive

int diceRoll = rgen.nextInt(1, 6);

// also: nextDouble, nextBoolean, nextColor, etc

Plan for Today

● Review: Animation & Randomness
● getElementAt & Null
● Event-driven Programming
● Instance Variables
● Whack-a-Mole

9

getElementAt
● The method:

GObject getElementAt(double x, double y);

returns which object is at the given location on the canvas.

10

getElementAt
● The method:

GObject getElementAt(double x, double y);

returns which object is at the given location on the canvas.

● The return type is GObject, since we don't know what specific
type (GRect, GOval, etc.) is really there.

11

getElementAt
● The method:

GObject getElementAt(double x, double y);

returns which object is at the given location on the canvas.

● The return type is GObject, since we don't know what specific
type (GRect, GOval, etc.) is really there.

● If no object is present, the special value null is returned.

12

Sand Art Revisited

/*

 * Given a grain of sand, returns whether that sand has

 * collided with any other objects on screen.

 */

private boolean hasHitSomethingElse(GOval sand) {

 double checkX = sand.getX() + sand.getWidth() / 2.0;

 double checkY = sand.getY() + sand.getHeight();

 GObject collidingObject = getElementAt(checkX, checkY);

 return collidingObject != null;

}

13

sand

Has sand hit
something else?

getElementAt

/*

 * Given a grain of sand, returns whether that sand has

 * collided with any other objects on screen.

 */

private boolean hasHitSomethingElse(GOval sand) {

 double checkX = sand.getX() + sand.getWidth() / 2.0;

 double checkY = sand.getY() + sand.getHeight();

 GObject collidingObject = getElementAt(checkX, checkY);

 return collidingObject != null;

}

14

sand

(checkX,
checkY)

Has sand hit
something else?

getElementAt

/*

 * Given a grain of sand, returns whether that sand has

 * collided with any other objects on screen.

 */

private boolean hasHitSomethingElse(GOval sand) {

 double checkX = sand.getX() + sand.getWidth() / 2.0;

 double checkY = sand.getY() + sand.getHeight();

 GObject collidingObject = getElementAt(checkX, checkY);

 return collidingObject != null;

}

15

sand

(checkX,
checkY)

Has sand hit
something else?

Null
null is a special variable value that objects can have that means
“nothing”. Primitives cannot be null.

16

Null
null is a special variable value that objects can have that means
“nothing”. Primitives cannot be null.

If a method returns an object, it can return null to signify “nothing”.
(just say return null;)

17

Null
null is a special variable value that objects can have that means
“nothing”. Primitives cannot be null.

If a method returns an object, it can return null to signify “nothing”.
(just say return null;)

// may be a GObject, or null if nothing at (x, y)

GObject maybeAnObject = getElementAt(x, y);

18

Null
null is a special variable value that objects can have that means
“nothing”. Primitives cannot be null.

If a method returns an object, it can return null to signify “nothing”.
(just say return null;)

// may be a GObject, or null if nothing at (x, y)

GObject maybeAnObject = getElementAt(x, y);

Objects have the value null before being initialized.

GOval circle; // initially null

19

Null

You can check if something is null using == and !=

20

// may be a GObject, or null if nothing at (x, y)

GObject maybeAnObject = getElementAt(x, y);

if (maybeAnObject != null) {

// do something with maybeAnObject

} else {

// null – nothing at that location

}

Null

Calling methods on an object that is null will crash your program!

21

// may be a GObject, or null if nothing at (x, y)

GObject maybeAnObject = getElementAt(x, y);

if (maybeAnObject != null) {

int x = maybeAnObject.getX(); // OK

} else {

int x = maybeAnObject.getX(); // CRASH!

}

Null

Calling methods on an object that is null will crash your program!
⇒ Throws a NullPointerException

22

Plan for Today

● Review: Animation & Randomness
● getElementAt & Null
● Event-driven Programming
● Instance Variables
● Whack-a-Mole

23

Events

● An event is some external stimulus that your program can
respond to.

● event-driven programming: A programming paradigm
(common in graphical programs) where your code is
executed in response to user events.

24

Events

● Common events include:
○ Mouse motion / clicking.
○ Keyboard buttons pressed.
○ Timers expiring.
○ Network data available.

25

Events

● Common events include:
○ Mouse motion / clicking.
○ Keyboard buttons pressed.
○ Timers expiring.
○ Network data available.

26

Events
public void run() {

// Java runs this when program launches

}

27

Events
public void run() {

// Java runs this when program launches

}

28

To respond to events,
your program must
write methods to

handle those events.

Events
public void run() {

// Java runs this when program launches

}

public void mouseClicked(MouseEvent event) {

// Java runs this when mouse is clicked

}

29

To respond to events,
your program must
write methods to

handle those events.

Events
public void run() {

// Java runs this when program launches

}

public void mouseClicked(MouseEvent event) {

// Java runs this when mouse is clicked

}

public void mouseMoved(MouseEvent event) {

// Java runs this when mouse is moved

}
30

To respond to events,
your program must
write methods to

handle those events.

Anatomy of a Mouse Method

31

public void mouseClicked(MouseEvent e) {

ore code ...

}

Anatomy of a Mouse Method

32

public void mouseClicked(MouseEvent e) {

}

Public so other
programs can call it

Anatomy of a Mouse Method

33

public void mouseClicked(MouseEvent e) {

}

Doesn’t return
anything

Anatomy of a Mouse Method

 Anatomy of a Mouse Method

34

public void mouseClicked(MouseEvent e) {

}

It must have one of the
mouse event names

Anatomy of a Mouse Method

35

public void mouseClicked(MouseEvent e) {

}

A collection of information about the
mouse event that just occurred

Anatomy of a Mouse Method

36

public void mouseClicked(MouseEvent e) {

double mouseX = e.getX();

double mouseY = e.getY();

}

Get information
about the event

Anatomy of a Mouse Method

37

public void mouseClicked(MouseEvent e) {

double mouseX = e.getX(); // mouse X-coord

double mouseY = e.getY(); // mouse Y-coord

}

Anatomy of a Mouse Method

38

public void mouseClicked(MouseEvent e) {

double mouseX = e.getX(); // mouse X-coord

double mouseY = e.getY(); // mouse Y-coord

// more code ...

}

Example: Hole Puncher

39

Example: Hole Puncher
. . .

import java.awt.event.*; // NEW

public class HolePuncher extends GraphicsProgram {

// Adds a “hole punch” where the user clicks

public void mouseClicked(MouseEvent e) {

// Get information about the event

double x = e.getX();

double y = e.getY();

// Add hole punch (GOval) at the mouse location

addHole(x, y);

}

private void addHole(double centerX, double centerY) { … }

} 40

Example: Hole Puncher
. . .

import java.awt.event.*; // NEW

public class HolePuncher extends GraphicsProgram {

// Adds a “hole punch” where the user clicks

public void mouseClicked(MouseEvent e) {

// Get information about the event

double x = e.getX();

double y = e.getY();

// Add hole punch (GOval) at the mouse location

addHole(x, y);

}

private void addHole(double centerX, double centerY) { … }

} 41

Example: Hole Puncher
. . .

import java.awt.event.*; // NEW

public class HolePuncher extends GraphicsProgram {

// Adds a “hole punch” where the user clicks

public void mouseClicked(MouseEvent e) {

// Get information about the event

double x = e.getX();

double y = e.getY();

// Add hole punch (GOval) at the mouse location

addHole(x, y);

}

private void addHole(double centerX, double centerY) { … }

} 42

Types of Mouse Events
● There are many different types of mouse events!
● Each takes the form:

public void eventMethodName(MouseEvent e) { ...

43

Example: Doodler

44

Example: Doodler
private static final int SIZE = 10;

...

public void mouseDragged(MouseEvent event) {

double mouseX = event.getX();

double mouseY = event.getY();

double rectX = mouseX – SIZE / 2.0;

double rectY = mouseY – SIZE / 2.0;

GRect rect = new GRect(rectX, rectY, SIZE, SIZE);

rect.setFilled(true);

rect.setColor(Color.MAGENTA);

add(rect);

}
45

Example: Doodler
private static final int SIZE = 10;

...

public void mouseDragged(MouseEvent event) {

double mouseX = event.getX();

double mouseY = event.getY();

double rectX = mouseX – SIZE / 2.0;

double rectY = mouseY – SIZE / 2.0;

GRect rect = new GRect(rectX, rectY, SIZE, SIZE);

rect.setFilled(true);

rect.setColor(Color.MAGENTA);

add(rect);

}
46

Example: Doodler
private static final int SIZE = 10;

...

public void mouseDragged(MouseEvent event) {

double mouseX = event.getX();

double mouseY = event.getY();

double rectX = mouseX – SIZE / 2.0;

double rectY = mouseY – SIZE / 2.0;

GRect rect = new GRect(rectX, rectY, SIZE, SIZE);

rect.setFilled(true);

rect.setColor(Color.MAGENTA);

add(rect);

}
47

Example: Doodler
private static final int SIZE = 10;

...

public void mouseDragged(MouseEvent event) {

double mouseX = event.getX();

double mouseY = event.getY();

double rectX = mouseX – SIZE / 2.0;

double rectY = mouseY – SIZE / 2.0;

GRect rect = new GRect(rectX, rectY, SIZE, SIZE);

rect.setFilled(true);

rect.setColor(Color.MAGENTA);

add(rect);

}
48

Recap: Events

49

1. User performs some action, like moving / clicking the mouse.

Recap: Events

50

1. User performs some action, like moving / clicking the mouse.

click!

Recap: Events

51

1. User performs some action, like moving / clicking the mouse.
2. This causes an event to occur!

click!

Recap: Events

52

1. User performs some action, like moving / clicking the mouse.
2. This causes an event to occur!

Event!

click!

Recap: Events

53

1. User performs some action, like moving / clicking the mouse.
2. This causes an event to occur!
3. Java executes a particular method to handle the event.

Event!

click!

Recap: Events

54

1. User performs some action, like moving / clicking the mouse.
2. This causes an event to occur!
3. Java executes a particular method to handle the event.

Event!

public void mouseClicked(...) {

...

}

click!

Recap: Events

55

1. User performs some action, like moving / clicking the mouse.
2. This causes an event to occur!
3. Java executes a particular method to handle the event.
4. That method’s code updates the screen appearance in some way

Event!

public void mouseClicked(...) {

...

}

click!

Recap: Events

56

1. User performs some action, like moving / clicking the mouse.
2. This causes an event to occur!
3. Java executes a particular method to handle the event.
4. That method’s code updates the screen appearance in some way

Event!

public void mouseClicked(...) {

...

}

Revisiting Doodler

public void mouseDragged(MouseEvent event) {

double mouseX = event.getX();

double mouseY = event.getY();

double rectX = mouseX – SIZE / 2.0;

double rectY = mouseY – SIZE / 2.0;

GRect rect = new GRect(rectX, rectY, SIZE, SIZE);

rect.setFilled(true);

rect.setColor(Color.MAGENTA);

add(rect);

}

57

Revisiting Doodler

public void mouseDragged(MouseEvent event) {

double mouseX = event.getX();

double mouseY = event.getY();

double rectX = mouseX – SIZE / 2.0;

double rectY = mouseY – SIZE / 2.0;

GRect rect = new GRect(rectX, rectY, SIZE, SIZE);

rect.setFilled(true);

rect.setColor(Color.MAGENTA);

add(rect);

}

58

What if we wanted the
same GRect to track the
mouse, instead of making
a new one each time?

MouseTracker

59

A Problem...

public void mouseMoved(MouseEvent e) {

double mouseX = e.getX();

double mouseY = e.getY();

// more code ...

}

60

A Problem...

public void mouseMoved(MouseEvent e) {

double mouseX = e.getX();

double mouseY = e.getY();

// more code ...

}

61

You don’t call this method, so you
can’t specify its parameters

A Problem...

public void mouseMoved(MouseEvent e) {

double mouseX = e.getX();

double mouseY = e.getY();

// more code ...

}

62

So, how can we give
mouseMoved access to a

single GRect we want to track?
You don’t call this method, so you

can’t specify its parameters

Plan for Today

● Review: Animation & Randomness
● getElementAt & Null
● Event-driven Programming
● Instance Variables
● Whack-a-Mole

63

Instance Variables
1. Variables exist until their inner-most control block ends.

64

Instance Variables
1. Variables exist until their inner-most control block ends.
2. If a variable is defined outside all methods, its inner-most control block

is the entire program!

65

Instance Variables
1. Variables exist until their inner-most control block ends.
2. If a variable is defined outside all methods, its inner-most control block

is the entire program!
3. We call these variables instance variables.

66

Instance Variables
1. Variables exist until their inner-most control block ends.
2. If a variable is defined outside all methods, its inner-most control block

is the entire program!
3. We call these variables instance variables.

private type name; // declared outside any method!

67

Instance Variables
1. Variables exist until their inner-most control block ends.
2. If a variable is defined outside all methods, its inner-most control block

is the entire program!
3. We call these variables instance variables.

private type name; // declared outside any method!

68

private GRect square;

public void run() {

square = new GRect(...);

GRect localSquare = new GRect(...);

}

Example: MouseTracker

69

Instance Variables + Events

/* Instance variable for the square to be tracked */

private GRect square;

public void run() {

square = makeSquare();

add(square);

}

public void mouseMoved(MouseEvent e) {

double x = e.getX() - SQUARE_SIZE / 2.0;

double y = e.getY() - SQUARE_SIZE / 2.0;

square.setLocation(x, y);

} 70

Use instance variables if you need to pass information between
the run method and the mouse event methods.

The Importance of Style
● It is considered extremely poor style to use instance variables

unnecessarily:

Do not use instance variables where local variables,
parameters, and return values suffice.

71

The Importance of Style
● It is considered extremely poor style to use instance variables

unnecessarily:

Do not use instance variables where local variables,
parameters, and return values suffice.

● Use local variables for temporary information.

72

The Importance of Style
● It is considered extremely poor style to use instance variables

unnecessarily:

Do not use instance variables where local variables,
parameters, and return values suffice.

● Use local variables for temporary information.
● Use parameters to communicate data into a method.

73

The Importance of Style
● It is considered extremely poor style to use instance variables

unnecessarily:

Do not use instance variables where local variables,
parameters, and return values suffice.

● Use local variables for temporary information.
● Use parameters to communicate data into a method.
● Use return values to communicate data out of a method.

74

Plan for Today

● Review: Animation & Randomness
● getElementAt & Null
● Event-driven Programming
● Instance Variables
● Whack-a-Mole

75

Putting it all together

76

Whack-a-Mole
Let’s use instance variables and events to make Whack-A-Mole!
● A mole should appear every second at a random location, and stop

once the user has gotten at least 10 points.
● If the user clicks a mole, remove it and increase their score by 1
● There should be a GLabel in the left corner showing their score

77

Let’s Code It!

78

Exception
● If the user clicks an area with no mole, the program crashes

○ A program crash in Java is called an exception
○ When you get an exception, Eclipse shows red error text
○ The error text shows the line number where the error occurred
○ Why did this error happen?
○ How can we avoid it?

79

Plan for Today

● Review: Animation & Randomness
● getElementAt & Null
● Event-driven Programming
● Instance Variables
● Whack-a-Mole

Next Time: Tracing & Memory

80

