Mouse Events and Instance Variables

Lecture 10

CST106A, Summer 2019 N

Sarai Gould && Laura Cruz-Albrecht

With inspiration from slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, Chris Piech, Brahm Capoor and others.X

Announcements

e HW2 was due at 10AM today

e HW 3 goes out today after lecture
o Due Thursday July 18 at 10AM
o Can optionally be done in pairs; check out the Pair Programming
link on website

http://web.stanford.edu/class/cs106a/assignments/pair.html

HW 3:
Breakout

You are here

72 Animation __>
Graphics

Programs

Plan for Today

Review: Animation & Randomness
getElementAt & Null

Event-driven Programming
Instance Variables

Whack-a-Mole

Plan for Today

Review: Animation & Randomness
getElementAt & Null

Event-driven Programming
Instance Variables

Whack-a-Mole

Review: Animation Loop

public void run() {

// setup
Make variables. Add graphics to canvas.

while (condition) {
// update world
Update graphics.

// pause
pause(milliseconds);

Review: Animation Loop

public void run() {

// setup
GRect square = makeSquare();

while (true) {
// update world
square.move(l, 0);

// pause
pause(PAUSE TIME);

Review: RandomGenerator

// this variable can generate random values
RandomGenerator rgen = RandomGenerator.getInstance();

// make a random number between 1 and 6 inclusive
int diceRoll = rgen.nextInt(1l, 6);

// also: nextDouble, nextBoolean, nextColor, etc

Plan for Today

Review: Animation & Randomness
getElementAt & Null

Event-driven Programming
Instance Variables

Whack-a-Mole

gefElementAf

e The method:
GObject getElementAt(double x, double y);

returns which object is at the given location on the canvas.

GObject

Z

GLabel GRect GOval others...

gefElementAf

e The method:
GObject getElementAt(double x, double y);

returns which object is at the given location on the canvas.

e The refurn type is GObject, since we don't know what specific
type (GRect, GOval, etc.) is really there.

gefElementAf

e The method:
GObject getElementAt(double x, double y);

returns which object is at the given location on the canvas.

e The refurn type is GObject, since we don't know what specific
type (GRect, GOval, etc.) is really there.

e If no object is present, the special value null is returned.

Sand Art Revisited

/>I<
* Given a grain of sand, returns whether that sand has
* collided with any other objects on screen.
*/

private boolean hasHitSomethingElse(GOval sand) {
double checkX = sand.getX() + sand.getWidth() / 2.9;
double checkY = sand.getY() + sand.getHeight();

GObject collidingObject = getElementAt(checkX, checkY);

Has sand hit

return collidingObject != null; something else?

gefElementAf

/>I<
* Given a grain of sand, returns whether that sand has
* collided with any other objects on screen.
*/

private boolean hasHitSomethingElse(GOval sand) {
double checkX = sand.getX() + sand.getWidth() / 2.9;
double checkY = sand.getY() + sand.getHeight();

GObject collidingObject = getElementAt(checkX, checkY);

return collidingObject != null;

(checkX,
checkyY)

Has sand hit
something else?

gefElementAf

/>I<
* Given a grain of sand, returns whether that sand has
* collided with any other objects on screen.
*/

private boolean hasHitSomethingElse(GOval sand) {
double checkX = sand.getX() + sand.getWidth() / 2.9;
double checkY = sand.getY() + sand.getHeight();

GObject collidingObject =|getElementAt(checkX, checkY);

return collidingObject != null;

(checkX,
checkyY)

Has sand hit
something else?

null is a special variable value that objects can have that means
“nothing”. Primitives cannot be null.

null is a special variable value that objects can have that means
“nothing”. Primitives cannot be null.

If a method refurns an object, it can return null to signify “nothing”.
(just say return null;)

null is a special variable value that objects can have that means
“nothing”. Primitives cannot be null.

If a method refurns an object, it can return null to signify “nothing”.
(just say return null;)

// may be a GObject, or null if nothing at (x, y)
GObject maybeAnObject = getElementAt(x, y);

null is a special variable value that objects can have that means
“nothing”. Primitives cannot be null.

If a method refurns an object, it can return null to signify “nothing”.
(just say return null;)

// may be a GObject, or null if nothing at (x, y)
GObject maybeAnObject = getElementAt(x, y);

Objects have the value null before being initialized.

GOval circle; // initially null

You can check if something is null using == and =

// may be a GObject, or null if nothing at (x, y)
GObject maybeAnObject = getElementAt(x, y);
if (maybeAnObject != null) {
// do something with maybeAnObject
} else {
// null - nothing at that location

20

Calling methods on an object that is null will crash your program!

// may be a GObject, or null if nothing at (x, y)
GObject maybeAnObject = getElementAt(x, y);
if (maybeAnObject != null) {
int x = maybeAnObject.getX(); // OK
} else {
int x = maybeAnObject.getX(); // CRASH!

21

Null

Calling methods on an object that is null will crash your program!
= Throws a NullPointerException

%5 Debug 8%

v [J] WhackAMole (2) [Java Application]
v I WhackAMole at localhost:55250
v LU"'} Thread [main] (Suspended (exception NullPointerException))
= WhackAMole.run() line: 30
= WhackAMole(Program).runHook() line: 2871
= WhackAMole(Program).startRun() line: 3441
= WhackAMole(Program).start(String[]) line: 3404
= WhackAMole(Program).start() line: 3351
= Program.main(String[]) line: 3654
& Thread [AWT-EventQueue-0] (Running)

22
O

Plan for Today

Review: Animation & Randomness
getElementAt & Null

Event-driven Programming
Instance Variables

Whack-a-Mole

23

e An eventis some external stimulus that your program can

respond to.
Click me! %

e event-driven programming:. A programming paradigm
(common in graphical programs) where your code is
executed in response to user events.

24

e Common events include:
o Mouse motion / clicking.
o Keyboard buttons pressed.
o Timers expiring.
o Network data available.

25

e Common events include:
o Mouse motion / clicking.
o Keyboard buttons pressed.
o Timers expiring.
o Network data available.

26

public void run() {
// Java runs this when program launches

27

public void run() {
// Java runs this when program launches

To respond to events,
your program must
write methods to
handle those events.

/

public void run() {
// Java runs this when program launches

)) . To respond to events,
public void mouseClicked(MouseEvent event) { your program must

write methods to
handle those events.

} /

// Java runs this when mouse is clicked

public void run() {
// Java runs this when program launches

)) . To respond to events,
public void mouseClicked(MouseEvent event) { your program must

. . . write methods to
// Java runs this when mouse is clicked handle those events.

} /

public void mouseMoved(MouseEvent event) {
// Java runs this when mouse is moved

30

Anatomy of a Mouse Method

public void mouseClicked(MouseEvent e) {

31

Anatomy of a Mouse Method

Public so other
programs can call it

|

public void mouseClicked(MouseEvent e) {

32

Anatomy of a Mouse Method

Doesn’t return
anything

|

public void mouseClicked(MouseEvent e) {

33

Anatomy of a Mouse Method

It must have one of the
mouse event names

|

public void mouseClicked(MouseEvent e) {

34

Anatomy of a Mouse Method

A collection of information about the
mouse event that just occurred

|

public void mouseClicked(MouseEvent e) {

35

Anatomy of a Mouse Method

public void mouseClicked(MouseEvent e) {
double mouseX = e.getX(); Get information
double mouseY = e.getY(); about the event

36

Anatomy of a Mouse Method

public void mouseClicked(MouseEvent e) {
double mouseX = e.getX(); // mouse X-coord
double mouseY = e.getY(); // mouse Y-coord

37

Anatomy of a Mouse Method

public void mouseClicked(MouseEvent e) {
double mouseX = e.getX(); // mouse X-coord
double mouseY = e.getY(); // mouse Y-coord
// more code ...

38

Example: Hole Puncher

!
|

Example: Hole Puncher

import java.awt.event.*; // NEW

public class HolePuncher extends GraphicsProgram {

// Adds a “hole punch” where the user clicks
public void mouseClicked(MouseEvent e) {

Example: Hole Puncher

import java.awt.event.*; // NEW
public class HolePuncher extends GraphicsProgram {

// Adds a “hole punch” where the user clicks
public void mouseClicked(MouseEvent e) {
// Get information about the event
double x = e.getX();
double y = e.getY();

Example: Hole Puncher

import java.awt.event.*; // NEW
public class HolePuncher extends GraphicsProgram {

// Adds a “hole punch” where the user clicks
public void mouseClicked(MouseEvent e) {
// Get information about the event
double x = e.getX();
double y = e.getY();

// Add hole punch (GOval) at the mouse location
addHole(x, y);

private void addHole(double centerX, double centerY) { ... }

} 42
==

Types of Mouse Events

e There are many different types of mouse events!
e Fach takes the form:

public void eventMethodName(MouseEvent e) { ...

Method Description
mouseMoved MOouse cursor moves
mouseDragged mouse cursor moves while button is held down
mousePressed mouse button is pressed down
mouseReleased mouse button is lifted up
mouseClicked mouse button is pressed and then released
mouseEntered mouse cursor enters your program's window
mouseExited mouse cursor leaves your program's window p

Example: Doodler

ooooooo

="
/

Example: Doodler

private static final int SIZE = 10;

public void mouseDragged(MouseEvent event) {

45

Example: Doodler

private static final int SIZE = 10;
public void mouseDragged(MouseEvent event) {

double mouseX = event.getX();
double mouseY = event.getY();

46

Example: Doodler

private static final int SIZE = 10;

public void mouseDragged(MouseEvent event) {
double mouseX = event.getX();
double mouseY = event.getY();
double rectX = mouseX - SIZE / 2.0;
double rectY = mouseY - SIZE / 2.0;

47

double rectX
double rectY
GRect rect
rect.setFilled(true);
rect.setColor(Color.MAGENTA);
add(rect);

private static final int SIZE = 10;

public void mouseDragged(MouseEvent event) {
double mouseX = event.getX();
double mouseY = event.getY();
mouseX - SIZE / 2.0;
mouseY - SIZE / 2.0;

Example: Doodler

new GRect(rectX, rectY, SIZE, SIZE),;

Recap: Events

1. User performs some action, like moving / clicking the mouse.

49

Recap: Events

1. User performs some action, like moving / clicking the mouse.

click!

50

Recap: Events

1. User performs some action, like moving / clicking the mouse.
2. This causes an event to occurl!

click!

51

Recap: Events

1. User performs some action, like moving / clicking the mouse.
2. This causes an event to occurl!

click!

52

Recap: Events

1. User performs some action, like moving / clicking the mouse.
2. This causes an event to occurl!
3. Java executes a particular method to handle the event.

click!

53

Recap: Events

1. User performs some action, like moving / clicking the mouse.
2. This causes an event to occurl!
3. Java executes a particular method to handle the event.

click!

public void mouseClicked(...) {

}

54

Recap: Events

User performs some action, like moving / clicking the mouse.

This causes an event to occurl!
Java executes a particular method to handle the event.

That method’s code updates the screen appearance in some way

W=

click!

public void mouseClicked(...) {

}

55

Recap: Events

User performs some action, like moving / clicking the mouse.

This causes an event to occurl!
Java executes a particular method to handle the event.

That method’s code updates the screen appearance in some way

W=

public void mouseClicked(...) {

}

56

Revisiting Doodler

public void mouseDragged(MouseEvent event) {
double mouseX = event.getX();
double mouseY = event.getY();
double rectX = mouseX - SIZE / 2.0;
double rectY = mouseY - SIZE / 2.0;
GRect rect = new GRect(rectX, rectY, SIZE, SIZE);
rect.setFilled(true);
rect.setColor(Color.MAGENTA);
add(rect);

!elO l—

57

Revisiting Doodler

public void mouseDragged(MouseEvent event) {
double mouseX = event.getX();
double mouseY = event.getY();
double rectX = mouseX - SIZE / 2.0;
double rectY = mouseY - SIZE / 2.0;
GRect rect = new GRect(rectX, rectY, SIZE, SIZE); /
rect.setFilled(true);
rect.setColor(Color.MAGENTA);
add(rect);

What if we wanted the
same GRect to track the
mouse, instead of making
a new one each time?¢

!elO l—

58

MouseTracker

.
L ICK

"

59

A Problem...

public void mouseMoved(MouseEvent e) {
double mouseX = e.getX();
double mouseY = e.getY();
// more code ...

60

A Problem...

You don’'t call this method, so you
can't specify its parameters

|

public void mouseMoved(MouseEvent e) {
double mouseX = e.getX();
double mouseY = e.getY();
// more code

61

A Problem...

So, how can we give
mouseMoved access to a
single GRect we want to track?

You don’'t call this method, so you
can't specify its parameters

|

public void mouseMoved(MouseEvent e) {
double mouseX = e.getX();
double mouseY = e.getY();
// more code

62

Plan for Today

Review: Animation & Randomness
getElementAt & Null

Event-driven Programming
Instance Variables

Whack-a-Mole

63

Instance Variables

1. Variables exist until their inner-most control block ends.

64

Instance Variables

1. Variables exist until their inner-most control block ends.
2. If a variable is defined outside all methods, its inner-most control block
is the entire program!

65

Instance Variables

1. Variables exist until their inner-most control block ends.

2. If avariable is defined outside all methods, its inner-most control block
is the entire program!

3. We call these variables instance variables.

66

Instance Variables

1. Variables exist until their inner-most control block ends.

2. If avariable is defined outside all methods, its inner-most control block
is the entire program!

3. We call these variables instance variables.

private type name; // declared outside any method!

67

Instance Variables

1. Variables exist until their inner-most control block ends.

2. If avariable is defined outside all methods, its inner-most control block
is the entire program!

3. We call these variables instance variables.

private type name; // declared outside any method!

private GRect square;

public void run() {
square = new GRect(...);
GRect localSquare = new GRect(...);

68

Example: MouseTlracker

.
L ICK

"

69

Instance Variables + Events

Use instance variables if you need to pass information between
the run method and the mouse event methods.

/* Instance variable for the square to be tracked */
private GRect square;

public void run() {
square = makeSquare();
add(square);

}

public void mouseMoved(MouseEvent e) {
double x = e.getX() - SQUARE_SIZE / 2.0;
double y = e.getY() - SQUARE_SIZE / 2.0;
square.setlLocation(x, y);

} 70

The Importance of Style

e |t is considered extremely poor style to use instance variables
unnecessarily:

Do not use instance variables where local variables,
parameters, and return values suffice.

71

The Importance of Style

e |t is considered extremely poor style to use instance variables
unnecessarily:

Do not use instance variables where local variables,
parameters, and return values suffice.

e Use local variables for temporary information.

72

The Importance of Style

e |t is considered extremely poor style to use instance variables
unnecessarily:

Do not use instance variables where local variables,
parameters, and return values suffice.

e Use local variables for temporary information.
e Use parameters to communicate data into a method.

73

The Importance of Style

It is considered extremely poor style to use instance variables
unnecessarily:

Do not use instance variables where local variables,
parameters, and return values suffice.

Use local variables for temporary information.
Use parameters to communicate data into a method.
Use return values to communicate data out of a method.

74

Plan for Today

Review: Animation & Randomness
getElementAt & Null

Event-driven Programming
Instance Variables

Whack-a-Mole

75

Putting it all together

@ ® WhackAMole
Score: 2

Whack-a-Mole

Let's use instance variables and events to make Whack-A-Molel

e A mole should appear every second at a random location, and stop
once the user has gotten at least 10 points.

e |[f the user clicks a mole, remove it and increase their score by |

e There should be a GLabel in the left corner showing their score

[XX] WhackAMole
Score: 2

77

Let’'s Code 1!

Exception

e If the user clicks an area with no mole, the program crashes

O O O O O

=) console 3%

A program crash in Java is called an exception

When you get an exception, Eclipse shows red error text

The error text shows the line number where the error occurred
Why did this error happen?

How can we avoid ite

(x)= Variables (= =% @ X E

WhackAMole [Java Application] /Library/Java/JavaVirtualMachines/jdk-11.0.1.jdk/Contents/Home/bin/java

Exception in thread "AWT-EventQueue-0" java.lang.NullPointerException

at
at
at
at
at
at
at

acm.graphics.GObjectList.remove(GObjectList.java:58)

acm.graphics.GCanvas. remove(GCanvas. java:857)

acm.program.GraphicsProgram. remove(GraphicsProgram.java:558)

WhackAMole.mouseClicked (WhackAMole. java:74)
java.desktop/java.awt.AWTEventMulticaster.mouseClicked (AWTEventMulticaster.java:278)
java.desktop/java.awt.Component.processMouseEvent(Component. java:6635)
java.desktop/javax.swing.JComponent.processMouseEvent(JComponent. java:3342)

79

Plan for Today

Review: Animation & Randomness
getElementAt & Null

Event-driven Programming
Instance Variables

Whack-a-Mole

Next Time: Tracing & Memory

80

