Methods and Scope with Tracing and
Debugging

Lecture 11

CST106A, Summer 2019
Sarai Gould && Laura Cruz-Albrecht

Announcements

e Honor Code Reminder

e Do not look at assignment solutions that are not your own.
o Online or another student’s.

e Do not share solutions with other students.
e |[f you discuss strategies (NOT SOLUTIONS), you must

indicate assistance you have received.
o You do not need to do this if the person is a CS106 staff member.

e You can only reuse work in certain, limited situations.
e |f you have questions about honor code, please ask the
instructors.

Plan for Today

Review: Null, Events, Instance Variables
Pass by Reference vs. Pass by Value
Types of Errors

Eclipse Debugger

Practice!

Review: Accessing the Canvas

It is possible to determine what, if anything, is at the canvas at @
particular point.

The method:
GObject getElementAt(double x, double y);

returns which object is at the given location on the canvas.

The return type is GObject, since we don't know what specific
type (GRect, GOval, etc.) is really there.

If N0 object is present, the special value null is returned.

Review: Null

null is a special variable value that objects can have that means
“nothing”. Primitives cannot be null.

If a method refurns an object, it can return null to signify “nothing”.
(just say return null;)

// may be a GObject, or null if nothing at (x, y)
GObject maybeAnObject = getElementAt(x, y);

Objects have the value null before being initialized.

GOval circle; // initially null

Review: Null

You can check if something is null using == and =

// may be a GObject, or null if nothing at (x, y)
GObject maybeAnObject = getElementAt(x, y);
if (maybeAnObject != null) {
// do something with maybeAnObject
} else {
// null - nothing at that location

Review: Null

Calling methods on an object that is null will crash your program!

// may be a GObject, or null if nothing at (x, y)
GObject maybeAnObject = getElementAt(x, y);
if (maybeAnObject != null) {
int x = maybeAnObject.getX(); // OK
} else {
int x = maybeAnObject.getX(); // CRASH!

Review: Null

Calling methods on an object that is null will crash your program!
= Throws a NullPointerException

%5 Debug 8%

v [J] WhackAMole (2) [Java Application]
v I WhackAMole at localhost:55250
v LU"'} Thread [main] (Suspended (exception NullPointerException))
= WhackAMole.run() line: 30
= WhackAMole(Program).runHook() line: 2871
= WhackAMole(Program).startRun() line: 3441
= WhackAMole(Program).start(String[]) line: 3404
= WhackAMole(Program).start() line: 3351
= Program.main(String[]) line: 3654
& Thread [AWT-EventQueue-0] (Running)

e An eventis some external stimulus that your program can

respond to.
Click me! %

e Common events include:
o Mouse motion / clicking.
o Keyboard buttons pressed.
o Timers expiring.
o Network data available.

public void run() {
// Java runs this when program launches

)) . To respond to events,
public void mouseClicked(MouseEvent event) { your program must

. . . write methods to
// Java runs this when mouse is clicked handle those events.

} /

public void mouseMoved(MouseEvent event) {
// Java runs this when mouse is moved

Review: Types of Mouse Events

e There are many different types of mouse events!
e Fach takes the form:

public void eventMethodName(MouseEvent e) { ...

Method Description
mouseMoved MOouse cursor moves
mouseDragged mouse cursor moves while button is held down
mousePressed mouse button is pressed down
mouseReleased mouse button is lifted up
mouseClicked mouse button is pressed and then released
mouseEntered mouse cursor enters your program's window
mouseExited mouse cursor leaves your program's window .

Review: MouseEvent Objects

public void mouseClicked(MouseEvent e) { ...

e A MouseEvent contains information about the event that
just occurred:

Method Description
e.getX() the x-coordinate of mouse cursor in the window
e.getY() the y-coordinate of mouse cursor in the window

User performs some action, like moving / clicking the mouse.

This causes an event to occurl!
Java executes a particular method to handle the event.

That method’s code updates the screen appearance in some way
2

W=

3

public void mouseClicked(...) {

}

Review: Instance Variables

1. Variables exist until their inner-most control block ends.

2. If avariable is defined outside all methods, its inner-most control block
is the entire program!

3. We call these variables instance variables.

private type name; // declared outside any method!

private GRect square = null;

public void run() {
square = new GRect(...);
GRect localSquare = new GRect(...);

Review: Instance Variables + Events

Often you need instance variables to pass information between the run
method and the mouse event methods.

/* Instance variable for the square to be tracked */
private GRect square = null;

public void run() {
square = makeSquare();
addSquareToCenter();

public void mouseMoved(MouseEvent e) {
double x = e.getX() - SQUARE_SIZE / 2.0;
double y = e.getY() - SQUARE_SIZE / 2.0;
square.setlLocation(x, y);

Review: The Importance of Style

It is considered extremely poor style to use instance variables
unnecessarily:

Do not use instance variables where local variables,
parameters, and return values suffice.

Use local variables for temporary information.
Use parameters to communicate data into a method.
Use return values to communicate data out of a method.

Speaking of Parametfters...

Pass by Reference vs. Pass by Value

Pass by Reference vs Value

Pass by Reference Pass by Value
Objects are passed by reference. Primitives are passed by value.
A few examples: A few examples:
. : char
int
GRect double

GImage

‘ boolean
GOval 19

Pass by Reference vs Value

What does this mean?

20

Let’s Look at a Program!

Pass by Reference vs Value

What does this mean?

If something is passed by reference, it can be altered simply
by passing it into a method.

If something is passed by value, it cannot be altered simply
by passing it into a method.

22

What Happenede

What Happened: Primitive

public void run(){

int primitivelnt = 0;
changeInt(primitiveInt);

GLabel intLabel = new GLabel(“primitivelInt: “ + primitivelnt, @, 50);
add(intLabel);

| NON VoidExample run

0

primitivelInt

24

What Happened: Primitive

public void run(){

int primitivelnt = 0;
changeInt(primitiveInt);
GLabel intLabel = new GLabel(“primitivelInt: “ + primitivelnt, @, 50);
add(intLabel);

| NON VoidExample run

0

primitivelInt

25

What Happened: Primitive

public void run(){

int primitivelnt = 0;

changeInt(primitiveInt);

-

Lcc

private void changeInt(int primitivelInt){

primitiveInt += 10;

}
}
| NON | VoidExample run changelnt
0 0
primitivelInt |[primitivelnt

40

What Happened: Primitive

changeInt(primitiveInt);

-_— - e . ° . o -_— - - —_—-

private void changeInt(int primitivelInt){

These are not the same variable. run changelnt

0 0

primitiveInt |[primitivelnt

Z/

What Happened: Primitive

changeInt(primitiveInt);

-_— - e . ° . o -_— - - —_—-

private void changeInt(int primitivelInt){

These are not the same variable. run changelnt
These are two variables with the same name.

0 0

primitiveInt |[primitivelnt

40

What Happened: Primitive

changeInt(primitiveInt);
—e e L BT e e
private void changeInt(int primitivelInt){

These are not the same variable.

These are two variables with the same name.
The primitiveInt inside of changeInt copied
the value of the primitivelnt inside of run.

run changelnt
0 - 0
primitiveInt |[primitivelnt

Z7

What Happened: Primitive

changeInt(primitiveInt);
S BT e e o C e e s
private void changeInt(int primitivelInt){

These are not the same variable. run changelInt
These are two variables with the same name.
The primitiveInt inside of changeInt copied 0 .0
the value of the primitivelInt inside of run. S—
They are stored in different locations in the primitivelnt |jprimitivelnt
computer’'s memory. One just copied the
value of the other variable. 30

What Happened: Primitive

public void run(){

int primitivelnt = 0;

changeInt(primitiveInt);

-

Lcc

private void changeInt(int primitivelInt){

primitiveInt += 10;

}
}
| NON | VoidExample run changelnt
0 0
primitivelInt |[primitivelnt

Sl

What Happened: Primitive

public void run(){

int primitivelnt = 0;

changeInt(primitiveInt);

-

Lcc

primitiveInt += 10;

private void changeInt(int primitivelInt){

}
}
| NON | VoidExample run changelnt
0 10
primitivelInt |[primitivelnt

Y4

What Happened: Primitive

public void run(){
int primitivelnt = 0;
changeInt(primitiveInt);

n_tec

private void changeInt(int primitivelInt){
primitiveInt += 10;

}

000 VoidExample ' run changelnt

0 10

primitivelInt |[primitivelnt

39

What Happened: Primitive

public void run(){

int primitivelnt = 0;
changeInt(primitiveInt);
GLabel intLabel = new GLabel(“primitivelInt: “ + primitivelnt, @, 50);
add(intLabel);

| NON VoidExample run

0

primitivelInt

34

What Happened: Primitive

public void run(){
int primitivelnt = 0;

changeInt(primitiveInt);

GLabel intlLabel = new GLabel(“primitivelInt: “ + primitivelnt, O, 50);

add(intLabel);

| NON VoidExample run

0

primitiveInt:

0

primitiveInt intLabel

i)

What Happened: Primitive

public void run(){

int primitivelnt = 0;
changeInt(primitiveInt);
GLabel intLabel = new GLabel(“primitivelInt: “ + primitivelnt, @, 50);

add(intLabel);

}

VoidExample

run

primitivelnt: 0

0

primitiveInt:

0

primitiveInt intLabel

30

What Happened: Primitive

public void run(){

int primitivelnt = 0;
changeInt(primitiveInt);
GLabel intLabel = new GLabel(“primitivelInt: “ + primitivelnt, @, 50);

add(intLabel);

}

VoidExample

run

primitivelnt: 0

0

primitiveInt:

0

primitiveInt intLabel

S/

What Happened: Object

public void run(){

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);
objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);
changeRect(objectRect);

}

VoidExample

run

primitivelnt: 0

We'll hide these for now!

[Sle}

What Happened: Object

public void run(){

GRect objectRect = new GRect(100, 100);

objectRect.setFilled(true);
objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);
changeRect(objectRect);

}

VoidExample

run

primitivelnt: 0

objectRect

39

What Happened: Object

}

public void run(){

objectRect.setFilled(true);

(100, 100);

objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);
changeRect(objectRect);

VoidExample

run

primitivelnt: O

objectRect

40

What Happened: Object

public void run(){

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);

objectRect.setColor(Color.BLUE);

add(objectRect, 100, 100);
changeRect(objectRect);

}

VoidExample

run

primitivelnt: 0

objectRect

41

What Happened: Object

public void run(){

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);
objectRect.setColor(Color.

add(objectRect, 100, 100);

changeRect(objectRect);

}

LUE);

VoidExample

primitivelnt: O

run

objectRect

42

What Happened: Object

public void run(){

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);
objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);

changeRect(objectRect);

}

VoidExample

primitivelnt: 0

run

objectRect

43

What Happened: Object

ublic void run(){

private void changeRect(GRect objectRect){

objectRect.setFilled(false);
objectRect.setColor(Color.GREEN);

}
GUU\UUJCLLI\CLL) J.UU_, J.UU},
changeRect(objectRect);
}
" NOK) VoidExample run changeRect

primitivelnt: 0

objectRect objectRect

17

What Happened: Object

ublic void run(){

private void changeRect(GRect objectRect){

objectRect.setFilled(false);
objectRect.setColor(Color.GREEN);

}
GUU\UUJCLLI\CLL, J.UU_, J.UU},
changeRect(objectRect);
}
" NOK) VoidExample run changeRect

primitivelnt: 0

objectRect objectRect

a9

What Happened: Object

ublic void run(){

private void changeRect(GRect objectRect){

objectRect.setFilled(false);
objectRect.setColor(Color.GREEN);

auu({uvuU jJTtutinTuoo, LT, LUT),

changeRect(objectRect);

run

changeRect

objectRect

objectRect

40

What Happened: Object

ublic void run(){

private void changeRect(GRect objectRect){

objectRect.setFilled(false);
objectRect.setColor(Color.GREEN);

auu({uvuU jJTtutinTuoo, LT, LUT),

changeRect(objectRect);

What
happenede

run

changeRect

objectRect

objectRect

4/

What Happened: Object

ublic void run(){

private void changeRect(GRect objectRect){

objectRect.setFilled(false);
objectRect.setColor(Color.GREEN);

auu({uvuU jJTtutinTuoo, LT, LUT),

changeRect(objectRect);

}

Unlike a primitive variable, it wasn't the value
that was copied here.

run

changeRect

objectRect

objectRect

40

What Happened: Object

ublic void run(){

private void changeRect(GRect objectRect){

objectRect.setFilled(false);
objectRect.setColor(Color.GREEN);

auu({uvuU jJTtutinTuoo, LT, LUT),

changeRect(objectRect);

}

Unlike a primitive variable, it wasn’t the value run changeRect
that was copied here.

Our changeRect objectRect variable kept
track of the location in memory where our objectRect |lobjectRect
run objectRect was stored.

a7

What Happened: Object

ublic void run(){

private void changeRect(GRect objectRect){

objectRect.setFilled(false);
objectRect.setColor(Color.GREEN);

auu({uvuU jJTtutinTuoo, LT, LUT),

changeRect(objectRect);

}

Basically, whenever we change our run changeRect
changeRect objectRect variable, we are
actually changing our run objectRect)
variable.

objectRect objectRect

The way we've programmed this, they are

connected together.
O

U

What Happened: Object

ublic void run(){

private void changeRect(GRect objectRect){

objectRect.setFilled(false);
objectRect.setColor(Color.GREEN);

}
GUU\UUJCLLI\CLL, J.UU_, J.UU},
changeRect(objectRect);
}
" NOK) VoidExample run changeRect

primitivelnt: 0

objectRect objectRect

ol

What Happened: Object

ublic void run(){

private void changeRect(GRect objectRect){

objectRect.setFilled(false);
lobjectRect.setColor(Color.GREEN) ;|

}
GUU\UUJCLLI\CLL, LT, J.UU},
changeRect(objectRect);
}
000 VoidExample run changeRect
primitivelnt: 0
objectRect objectRect

24

What Happened: Object

ublic void run(){

private void changeRect(GRect objectRect){

objectRect.setFilled(false);
objectRect.setColor(Color.GREEN);

auu({uvuU jJTtutinTuoo, LT, LUT),

changeRect(objectRect);

}

" NOK) VoidExample run changeRect

primitivelnt: 0

objectRect objectRect

29

What Happened: Object

public void run(){

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);
objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);

changeRect(objectRect);

}
primitivelnt: 0
objectRect objectRect
54

What Happened: Object

public void run(){

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);
objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);
changeRect(objectRect);

3]

| JON | VoidExample run

changeRect

primitivelnt: 0

objectRect

objectRect

99

Pass by Reference vs Value

What does this mean?

If something is passed by reference, it can be altered simply
by passing it into a method.

If something is passed by value, it cannot be altered simply
by passing it into a method.

56

Types of Errors

Types of Errors

Syntax Errors:

A programming “typo”. Usually causes a red squiggly line in code.

58

Types of Errors

Syntax Errors:
A programming “typo”. Usually causes a red squiggly line in code.
Execution Errors:

Something that crashes the program after you run if.

59

Types of Errors

Syntax Errors:

A programming “typo”. Usually causes a red squiggly line in code.

Execution Errors:

Something that crashes the program after you run if.

Logic Errors:

All of your code runs, but it produces unexpected results.

60

How Can We Debug Errorse

How Can We Debug Errorse

Using the Eclipse Debugger!

62

How Can We Debug Errorse

Could we have debugged our previous
program using the Eclipse Debuggere

63

Debugger Commands

7" Suspend. Stops the program immediately as if it had hit a breakpoint.

@ Terminate. Exits from the program entirely.

~L._ Step Into. Executes one statement of the program and then stops again. If
that statement includes a method call, the program will stop at the first line
of that method. As noted below, this option is not as useful as Step Over.

=, Step Over. Executes one statement of the program at this level and then stops
again. Any method calls in the statement are executed through to completion
unless they contain explicit breakpoints.

_i= Step Return. Continues to execute this method until it returns, after which
the debugger stops in the caller (the method that called the current method).

The debugger allows you to step through the execution of a program, one line at a time.

64

| can view what my
variables are currently
equal to by opening
the “Variables” View.

How?e

Click Window

Click Show View
Click Other...
Search for Variables

Variables View

Click Variables

al4e public void run() {
Lecture11/src/PickAColor.java
216 int primitivelInt = 0;
7 changeInt(primitiveInt);
18 GLabel intLabel = new GLabel("primitiveInt: " + primitiveInt, @, 50);
19 add(intLabel); =
20
21
22 GRect objectRect = new GRect (100, 100);
23 objectRect.setFilled(true);
24 objectRect.setColor(Color.BLUE);
25 add(objectRect, 0, 100);
26 changeRect(objectRect);
27 }
28
29¢ /%
30 * Adds 10 to an int passed into it.
31 x/
2" PPl PR APRR T e SN [P, g I (N on Mgttt SCH J BT SEPRPIRE, St L ¥ r
% Debug (x)= Variables 53 gE Y= O
Name Value
[Z+ no method return value
» o this ReferenceVsValue (id=29)
[primitvent e
0
65

Setting a Breakpoint

To start the debugger, it helps

to set a breakpoint. Double

click next to the line number »

where you want to set @ #14e public void run() {
breakpoint. This will create @ Em breakpoint ReferenceVsValye [ing; 161 = Q)3
little blue dot, or breakpoint. T T

Your code will stop and start
the debugger when it sees the
breakpoint.

66

Let’s Debug Our Program!

What's the Problem?@

Ummm, | have a problem.
Can you help?

/

What's the Problem?@

| wrote my whole program
without testing it and now I'm
stuck!

/

Let’s Help Duke!

Plan for Today

Review: Null, Events, Instance Variables
Pass by Reference vs. Pass by Value
Types of Errors

Eclipse Debugger

Practice!

71

