
Methods and Scope with Tracing and
Debugging

CS106A, Summer 2019
Sarai Gould && Laura Cruz-Albrecht

Lecture 11

Announcements

● Honor Code Reminder

2

Honor Code

● Do not look at assignment solutions that are not your own.
○ Online or another student’s.

● Do not share solutions with other students.
● If you discuss strategies (NOT SOLUTIONS), you must

indicate assistance you have received.
○ You do not need to do this if the person is a CS106 staff member.

● You can only reuse work in certain, limited situations.
● If you have questions about honor code, please ask the

instructors.
3

Plan for Today

● Review: Null, Events, Instance Variables
● Pass by Reference vs. Pass by Value
● Types of Errors
● Eclipse Debugger
● Practice!

4

Review: Accessing the Canvas
● It is possible to determine what, if anything, is at the canvas at a

particular point.

● The method:

GObject getElementAt(double x, double y);

returns which object is at the given location on the canvas.

● The return type is GObject, since we don't know what specific
type (GRect, GOval, etc.) is really there.

● If no object is present, the special value null is returned.

5

Review: Null
null is a special variable value that objects can have that means
“nothing”. Primitives cannot be null.

If a method returns an object, it can return null to signify “nothing”.
(just say return null;)

// may be a GObject, or null if nothing at (x, y)

GObject maybeAnObject = getElementAt(x, y);

Objects have the value null before being initialized.

GOval circle; // initially null

6

Review: Null

You can check if something is null using == and !=

7

// may be a GObject, or null if nothing at (x, y)

GObject maybeAnObject = getElementAt(x, y);

if (maybeAnObject != null) {

// do something with maybeAnObject

} else {

// null – nothing at that location

}

Review: Null

Calling methods on an object that is null will crash your program!

8

// may be a GObject, or null if nothing at (x, y)

GObject maybeAnObject = getElementAt(x, y);

if (maybeAnObject != null) {

int x = maybeAnObject.getX(); // OK

} else {

int x = maybeAnObject.getX(); // CRASH!

}

Review: Null

Calling methods on an object that is null will crash your program!
⇒ Throws a NullPointerException

9

Review: Events

● An event is some external stimulus that your program can
respond to.

● Common events include:
○ Mouse motion / clicking.
○ Keyboard buttons pressed.
○ Timers expiring.
○ Network data available.

10

Review: Events
public void run() {

// Java runs this when program launches

}

public void mouseClicked(MouseEvent event) {

// Java runs this when mouse is clicked

}

public void mouseMoved(MouseEvent event) {

// Java runs this when mouse is moved

}
11

To respond to events,
your program must
write methods to

handle those events.

Review: Types of Mouse Events
● There are many different types of mouse events!
● Each takes the form:

public void eventMethodName(MouseEvent e) { ...

12

Review: MouseEvent Objects
public void mouseClicked(MouseEvent e) { ...

● A MouseEvent contains information about the event that
just occurred:

13

Review: Events

14

1. User performs some action, like moving / clicking the mouse.
2. This causes an event to occur!
3. Java executes a particular method to handle the event.
4. That method’s code updates the screen appearance in some way

Event!

public void mouseClicked(...) {

...

}1

2

3
4

Review: Instance Variables
1. Variables exist until their inner-most control block ends.
2. If a variable is defined outside all methods, its inner-most control block

is the entire program!
3. We call these variables instance variables.

private type name; // declared outside any method!

15

private GRect square = null;

public void run() {

square = new GRect(...);

GRect localSquare = new GRect(...);

}

Review: Instance Variables + Events

/* Instance variable for the square to be tracked */

private GRect square = null;

public void run() {

square = makeSquare();

addSquareToCenter();

}

public void mouseMoved(MouseEvent e) {

double x = e.getX() - SQUARE_SIZE / 2.0;

double y = e.getY() - SQUARE_SIZE / 2.0;

square.setLocation(x, y);

} 16

Often you need instance variables to pass information between the run
method and the mouse event methods.

Review: The Importance of Style
● It is considered extremely poor style to use instance variables

unnecessarily:

Do not use instance variables where local variables,
parameters, and return values suffice.

● Use local variables for temporary information.
● Use parameters to communicate data into a method.
● Use return values to communicate data out of a method.

17

Speaking of Parameters...

Pass by Reference vs. Pass by Value

18

Pass by Reference

Objects are passed by reference.

A few examples:

Pass by Value

Primitives are passed by value.

A few examples:

19

Pass by Reference vs Value

int

double

char

GRect

GOval

GImage
boolean

Pass by Reference vs Value

What does this mean?

20

Let’s Look at a Program!

21

Pass by Reference vs Value

What does this mean?
If something is passed by reference, it can be altered simply
by passing it into a method.

If something is passed by value, it cannot be altered simply
by passing it into a method.

22

What Happened?

23

What Happened: Primitive

24

public void run(){

int primitiveInt = 0;
changeInt(primitiveInt);
GLabel intLabel = new GLabel(“primitiveInt: “ + primitiveInt, 0, 50);
add(intLabel);

...

}

primitiveInt

0

run

What Happened: Primitive

25

public void run(){

int primitiveInt = 0;
changeInt(primitiveInt);
GLabel intLabel = new GLabel(“primitiveInt: “ + primitiveInt, 0, 50);
add(intLabel);

...

}

primitiveInt

0

run

What Happened: Primitive

26

public void run(){

int primitiveInt = 0;
changeInt(primitiveInt);
GLabel intLabel = new GLabel(“primitiveInt: “ + primitiveInt, 0, 50);
add(intLabel);

...

}

primitiveInt

0

run

private void changeInt(int primitiveInt){

primitiveInt += 10;
}

primitiveInt

0

changeInt

What Happened: Primitive

27

public void run(){

int primitiveInt = 0;
changeInt(primitiveInt);
GLabel intLabel = new GLabel(“primitiveInt: “ + primitiveInt, 0, 50);
add(intLabel);

...

}

primitiveInt

0

run

private void changeInt(int primitiveInt){

primitiveInt += 10;
}

primitiveInt

0

changeIntThese are not the same variable.

What Happened: Primitive

28

public void run(){

int primitiveInt = 0;
changeInt(primitiveInt);
GLabel intLabel = new GLabel(“primitiveInt: “ + primitiveInt, 0, 50);
add(intLabel);

...

}

primitiveInt

0

run

private void changeInt(int primitiveInt){

primitiveInt += 10;
}

primitiveInt

0

changeIntThese are not the same variable.
These are two variables with the same name.

What Happened: Primitive

29

public void run(){

int primitiveInt = 0;
changeInt(primitiveInt);
GLabel intLabel = new GLabel(“primitiveInt: “ + primitiveInt, 0, 50);
add(intLabel);

...

}

primitiveInt

0

run

private void changeInt(int primitiveInt){

primitiveInt += 10;
}

primitiveInt

0

changeIntThese are not the same variable.
These are two variables with the same name.
The primitiveInt inside of changeInt copied
the value of the primitiveInt inside of run.

What Happened: Primitive

30

public void run(){

int primitiveInt = 0;
changeInt(primitiveInt);
GLabel intLabel = new GLabel(“primitiveInt: “ + primitiveInt, 0, 50);
add(intLabel);

...

}

primitiveInt

0

run

private void changeInt(int primitiveInt){

primitiveInt += 10;
}

primitiveInt

0

changeIntThese are not the same variable.
These are two variables with the same name.
The primitiveInt inside of changeInt copied
the value of the primitiveInt inside of run.
They are stored in different locations in the
computer’s memory. One just copied the
value of the other variable.

What Happened: Primitive

31

public void run(){

int primitiveInt = 0;
changeInt(primitiveInt);
GLabel intLabel = new GLabel(“primitiveInt: “ + primitiveInt, 0, 50);
add(intLabel);

...

}

primitiveInt

0

run

private void changeInt(int primitiveInt){

primitiveInt += 10;
}

primitiveInt

0

changeInt

What Happened: Primitive

32

public void run(){

int primitiveInt = 0;
changeInt(primitiveInt);
GLabel intLabel = new GLabel(“primitiveInt: “ + primitiveInt, 0, 50);
add(intLabel);

...

}

primitiveInt

0

run

private void changeInt(int primitiveInt){

primitiveInt += 10;
}

primitiveInt

10

changeInt

What Happened: Primitive

33

public void run(){

int primitiveInt = 0;
changeInt(primitiveInt);
GLabel intLabel = new GLabel(“primitiveInt: “ + primitiveInt, 0, 50);
add(intLabel);

...

}

primitiveInt

0

run

private void changeInt(int primitiveInt){

primitiveInt += 10;
}

primitiveInt

10

changeInt

What Happened: Primitive

34

public void run(){

int primitiveInt = 0;
changeInt(primitiveInt);
GLabel intLabel = new GLabel(“primitiveInt: “ + primitiveInt, 0, 50);
add(intLabel);

...

}

primitiveInt

0

run

What Happened: Primitive

35

public void run(){

int primitiveInt = 0;
changeInt(primitiveInt);
GLabel intLabel = new GLabel(“primitiveInt: “ + primitiveInt, 0, 50);
add(intLabel);

...

}

primitiveInt

0

run

primitiveInt: 0

intLabel

What Happened: Primitive

36

public void run(){

int primitiveInt = 0;
changeInt(primitiveInt);
GLabel intLabel = new GLabel(“primitiveInt: “ + primitiveInt, 0, 50);
add(intLabel);

...

}

primitiveInt: 0

primitiveInt

0

run

primitiveInt: 0

intLabel

What Happened: Primitive

37

public void run(){

int primitiveInt = 0;
changeInt(primitiveInt);
GLabel intLabel = new GLabel(“primitiveInt: “ + primitiveInt, 0, 50);
add(intLabel);

...

}

primitiveInt: 0

primitiveInt

0

run

primitiveInt: 0

intLabel

What Happened: Object

38

public void run(){

...

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);
objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);
changeRect(objectRect);

}

}

primitiveInt: 0

primitiveInt

0

run

primitiveInt: 0

intLabel

We’ll hide these for now!

What Happened: Object

39

public void run(){

...

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);
objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);
changeRect(objectRect);

}

}

primitiveInt: 0

objectRect

run

What Happened: Object

40

public void run(){

...

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);
objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);
changeRect(objectRect);

}

}

primitiveInt: 0

run

objectRect

What Happened: Object

41

public void run(){

...

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);
objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);
changeRect(objectRect);

}

}

primitiveInt: 0

run

objectRect

What Happened: Object

42

public void run(){

...

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);
objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);
changeRect(objectRect);

}

}

primitiveInt: 0

run

objectRect

What Happened: Object

43

public void run(){

...

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);
objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);
changeRect(objectRect);

}

}

primitiveInt: 0

run

objectRect

What Happened: Object

44

public void run(){

...

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);
objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);
changeRect(objectRect);

}

}

primitiveInt: 0

run

objectRect

private void changeRect(GRect objectRect){

objectRect.setFilled(false);
objectRect.setColor(Color.GREEN);

}

changeRect

objectRect

What Happened: Object

45

public void run(){

...

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);
objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);
changeRect(objectRect);

}

}

primitiveInt: 0

run

objectRect

private void changeRect(GRect objectRect){

objectRect.setFilled(false);
objectRect.setColor(Color.GREEN);

}

changeRect

objectRect

What Happened: Object

46

public void run(){

...

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);
objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);
changeRect(objectRect);

}

run

objectRect

private void changeRect(GRect objectRect){

objectRect.setFilled(false);
objectRect.setColor(Color.GREEN);

}

changeRect

objectRect

! ! !

What Happened: Object

47

public void run(){

...

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);
objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);
changeRect(objectRect);

}

run

objectRect

private void changeRect(GRect objectRect){

objectRect.setFilled(false);
objectRect.setColor(Color.GREEN);

}

changeRect

objectRect

What
happened?

What Happened: Object

48

public void run(){

...

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);
objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);
changeRect(objectRect);

}

run

objectRect

private void changeRect(GRect objectRect){

objectRect.setFilled(false);
objectRect.setColor(Color.GREEN);

}

changeRect

objectRect

Unlike a primitive variable, it wasn’t the value
that was copied here.

What Happened: Object

49

public void run(){

...

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);
objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);
changeRect(objectRect);

}

run

objectRect

private void changeRect(GRect objectRect){

objectRect.setFilled(false);
objectRect.setColor(Color.GREEN);

}

changeRect

objectRect

Unlike a primitive variable, it wasn’t the value
that was copied here.

Our changeRect objectRect variable kept
track of the location in memory where our
run objectRect was stored.

What Happened: Object

50

public void run(){

...

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);
objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);
changeRect(objectRect);

}

run

objectRect

private void changeRect(GRect objectRect){

objectRect.setFilled(false);
objectRect.setColor(Color.GREEN);

}

changeRect

objectRect

Basically, whenever we change our
changeRect objectRect variable, we are
actually changing our run objectRect
variable.

The way we’ve programmed this, they are
connected together.

What Happened: Object

51

public void run(){

...

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);
objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);
changeRect(objectRect);

}

run

objectRect

private void changeRect(GRect objectRect){

objectRect.setFilled(false);
objectRect.setColor(Color.GREEN);

}

changeRect

objectRect

primitiveInt: 0

What Happened: Object

52

public void run(){

...

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);
objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);
changeRect(objectRect);

}

run

objectRect

private void changeRect(GRect objectRect){

objectRect.setFilled(false);
objectRect.setColor(Color.GREEN);

}

changeRect

objectRect

primitiveInt: 0

What Happened: Object

53

public void run(){

...

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);
objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);
changeRect(objectRect);

}

run

objectRect

private void changeRect(GRect objectRect){

objectRect.setFilled(false);
objectRect.setColor(Color.GREEN);

}

changeRect

objectRect

primitiveInt: 0

What Happened: Object

54

public void run(){

...

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);
objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);
changeRect(objectRect);

}

run

objectRect

changeRect

objectRect

primitiveInt: 0

What Happened: Object

55

public void run(){

...

GRect objectRect = new GRect(100, 100);
objectRect.setFilled(true);
objectRect.setColor(Color.BLUE);
add(objectRect, 100, 100);
changeRect(objectRect);

}

run

objectRect

changeRect

objectRect

primitiveInt: 0

Pass by Reference vs Value

What does this mean?
If something is passed by reference, it can be altered simply
by passing it into a method.

If something is passed by value, it cannot be altered simply
by passing it into a method.

56

Types of Errors

57

Types of Errors
Syntax Errors:

A programming “typo”. Usually causes a red squiggly line in code.

58

Types of Errors
Syntax Errors:

A programming “typo”. Usually causes a red squiggly line in code.

Execution Errors:

Something that crashes the program after you run it.

59

Types of Errors
Syntax Errors:

A programming “typo”. Usually causes a red squiggly line in code.

Execution Errors:

Something that crashes the program after you run it.

Logic Errors:

All of your code runs, but it produces unexpected results.

60

How Can We Debug Errors?

61

How Can We Debug Errors?

Using the Eclipse Debugger!

62

How Can We Debug Errors?

Could we have debugged our previous
program using the Eclipse Debugger?

63

Debugger Commands

64

Variables View

65

I can view what my
variables are currently
equal to by opening
the “Variables” View.

How?
● Click Window
● Click Show View
● Click Other…
● Search for Variables
● Click Variables

Setting a Breakpoint
To start the debugger, it helps
to set a breakpoint. Double
click next to the line number
where you want to set a
breakpoint. This will create a
little blue dot, or breakpoint.

Your code will stop and start
the debugger when it sees the
breakpoint.

66

Let’s Debug Our Program!

67

What’s the Problem?

68

Ummm, I have a problem.
Can you help?

What’s the Problem?

69

I wrote my whole program
without testing it and now I’m
stuck!

Let’s Help Duke!

70

Plan for Today

● Review: Null, Events, Instance Variables
● Pass by Reference vs. Pass by Value
● Types of Errors
● Eclipse Debugger
● Practice!

71

