Memory

Lecture 12

CST106A, Summer 2019
Sarai Gould && Laura Cruz-Albrecht

Announcements

e SCPD OH only for SCPD students

e Midtermin 1 week...
o In-Person Review Session on Friday, at 10:30am in Gates BO1
o Midterm will be 7pm - 9pm in Bishop

Plan for Today

Review: Pass by Reference vs. Value, Eclipse Debugger
Equality: Primitives and Objects

Primitives on the Stack

Objects on the Heap

Why This Matters!

Pass by Reference vs Value

Pass by Reference Pass by Value
Objects are passed by reference. Primitives are passed by value.
A few examples: A few examples:
. : char
int
GRect double

GImage

‘ boolean
GOval)

Pass by Reference vs Value

What does this mean?

If something is passed by reference, it can be altered simply
by passing it into a method.

If something is passed by value, it cannot be altered simply
by passing it into a method.

Types of Errors

Syntax Errors:

A programming “typo”. Usually causes a red squiggly line in code.

Execution Errors:

Something that crashes the program after you run if.

Logic Errors:

All of your code runs, but it produces unexpected results.

How Can We Debug Errorse

Using the Eclipse Debugger!

Debugger Commands

7" Suspend. Stops the program immediately as if it had hit a breakpoint.

@ Terminate. Exits from the program entirely.

~L._ Step Into. Executes one statement of the program and then stops again. If
that statement includes a method call, the program will stop at the first line
of that method. As noted below, this option is not as useful as Step Over.

=, Step Over. Executes one statement of the program at this level and then stops
again. Any method calls in the statement are executed through to completion
unless they contain explicit breakpoints.

_i= Step Return. Continues to execute this method until it returns, after which
the debugger stops in the caller (the method that called the current method).

The debugger allows you to step through the execution of a program, one line at a time.

Variables View

al4e public void run() {
. Lecture11/src/PickAColor.java
| can view what my 216 int primitiveInt = 0;
. »17 changeInt(primitiveInt);
VGFIOb'GS are CUFrenﬂy 18 GLabel intLabel = new GLabel("primitiveInt: " + primitiveInt, @, 50);
19 add(intLabel); =

equal to by opening 5
the “Variables” View. 21

22 GRect objectRect = new GRect (100, 100);
23 objectRect.setFilled(true);
How?2 24 objectRect.setColor(Color.BLUE);
. . 25 add(objectRect, 0, 100);
o Cl!Ck Window 26 changeRect(objectRect);
e Click Show View 27 }
e Click Other... =
e Search for Variables 30 * Adds 10 to an int passed into it.
e Click Variables R T T T —— T T
% Debug (x)= Variables 53 St F ¥ = 8
Name Value
[Z+ no method return value
» o this ReferenceVsValue (id=29)
I
0
9

Setting a Breakpoint

To start the debugger, it helps

to set a breakpoint. Double

click next to the line number »

where you want to set @ #14e public void run() {
breakpoint. This will create @ Em breakpoint ReferenceVsValye [ing; 161 = Q)3
little blue dot, or breakpoint. T T

Your code will stop and start
the debugger when it sees the
breakpoint.

Are They Equale

public void run(){

int numl
int num2

12;
12;

if(numl == num2){
println(“These integers are equal!”);
} else {
println(“Actually, these integers are not equal.”);

}

Are They Equale

public void run(){

GRect rectl
GRect rect2

new GRect(100, 100);
new GRect(100, 100);

if(rectl == rect2){
println(“These rectangles are equal!”);
} else {
println(“Actually, these rectangles are not equal.”);

}

Are They Equal¢

public void run(){

GRect rect3 = new GRect(100, 100);

if(rect3 == rect3){
println(“This rectangle is equal to itself!”);
} else {
println(“Actually, this rectangle is not equal to itself.”);

}

What's Going On Here?

Can you have two different versions of the same number?
Can one number 12 be different from another number 12¢

What's Going On Here?

Can you have two different versions of the same number?
Can one number 12 be different from another number 12¢

Can you have two different versions of the same rectangle?¢
Can one rectangle with a width and height of 100 be
different from another rectangle with a width and height of
100%¢

What's Going On Here?

You can have two different rectangles with the same
properties, but you can’t have two different number 125s.

Being the same thing is different from having the same
properties.

Are They Equale

public void run(){

GRect rect3 = new GRect(100, 100);

if(rect3 == rect3){
println(“This rectangle is equal to itself!”);
} else {
println(“Actually, this rectangle is not equal to itself.”);

}
}

This will only evaluate to true if it's the exact same rectangle! Let’s look
info why.

Hey Duke!
Karell So good to see you.

/ um, will Sarai delete us?
Well, you'll always be in my memory \
/ Heap or stack?
Heap ofc |
/ Now that’s true friendship <3

—\

What Happened: Primitive

public void run(){
int primitivelnt = 0;
changeInt(primitiveInt);

private void changeInt(int primitiveInt){
primitiveInt += 10;

}

Remember, in Thursday'’s
example, when we called a
new method, we put a box
representing our method on
top of the box representing
run().

We created a stack.

What Happened: Primitive

public void run(){
int primitivelnt = 0;
changeInt(primitiveInt);

private void changeInt(int primitiveInt){
primitiveInt += 10;

}

We created a stack.

The computer does the
same thing!

It creates a stack of things
to keep track of in its
temporary memory.

What Happened: Primitive

public void run(){ The computer creates a
int primitivelInt = 0; .
changeInt(primitiveInt); stack of _Thl.ngs fo keep

track of in its tfemporary

memory.

private void changeInt(int primitiveInt){
primitiveInt += 10;

] And when the computer is

done with something on the
stack?

}

What Happened: Primitive

public void run(){ The old item in memory is

int primitivelnt = o; removed from the stack!
changeInt(primitiveInt);

println(“primitiveInt: “ + primitiveInt, @, 50);

An Example: Stack

public void run(){
firstMethodCall()

The stack stores method
calls and local variables in
our program.

Right now run() is on the
top of the stack.

An Example: Stack

public void run(){ The stack stores method
firstMethodCall() calls and local variables in
public void firstMethodCall(){ our program.
secondMethodCall()
Right now
y firstMethodCall() is on the
top of the stack.

An Example: Stack

public void run(){ Righf now
firstMethodCall() secondMethodCall() is on
public void firstMethodCall(){ the fop of the stack.
secondMethodCall()

public void secondMethodCall(){ And so it continues.

thirdMethodMethodCall()

An Example: Stack

Right now run() is on the top of

public void run(){

int numl = 18; the stack
int num2 = 13;
double answer = average(numl, num2); We will create a new stack
} .
frame for it.

run

An Example: Stack

public void run(){

int numl 18;

int num2 = 13;
double answer

average(numl, num2);

run

18

numl

As we create local variables,
they are added to our stack as
well.

Local variables are variables
created within our current
scope.

An Example: Stack

public void run(){
18;

int numl

int num2 = 13;

double answer

average(numl, num2);

}
run

18 13
numl num2

As we create local variables,
they are added to our stack as
well.

Local variables are variables
created within our current
scope.

An Example: Stack

public void run(){
int numl = 18;
int num2 = 13;

double answer

= average(numl, num2);

}
run

18 13
numl num2

Look, we see a new method!

Remember, we always
evaluate the right side first!

An Example: Stack

public void run(){
int numl = 18;
int num2 = 13;
double answer =

average(numl, num2);

}
run

18 13
numl num2

Look, we see a new method!

(Remember, we always
evaluate the right side first!)

What do we do now?e

An Example: Stack

public void run(){

private double average(double a, double b){

double sum + b;

= 2
) return sum / 2;

run
average

Create a new stack framel!

Every fime a new method is
called we create a new stack
frame and copy the parameter
values that were passed in!

An Example: Stack

public void run(){

As new local variables are

private double average(double a, double b){ created, we created new
boxes for them and add them
] I‘fg:zi‘; s o to the stack as well!
}
run
average

n 18.0 13.0 31.0

a b sum

An Example: Stack

public void run(){

) return sum / 2;

double sum = a + b;

private double average(double a, double b){

run

average

13.

31.0

sum

When we return this allows @
method to pass information
back to the caller.

The caller is the method that
called our current method.

An Example: Stack

public void run(){
int numl = 18;
int num2 = 13;
double answer =

average(numl, num2);

}
run

18 13 15.5
numl num2 answer

When average returned, we
removed it from the stack
framel!

This removed it from memory as
well as all of the local variables
it created!

Primitives

1 2.0 ‘a’ true

imAnInt imADouble imAChar imABoolean more?

All of the primitive variables we create in memory have a fixed size.

All ints receive the same amount of space, all doubles receive the same
amount of space, etc...

1 2.0 ‘a’ true

imAnInt imADouble imAChar imABoolean more?

ints receive 4 bytes.
doubles receive 8 bytes.
chars receive 2 bytes.

booleans are less precisely defined, but still a primitive!

Objects

imARect imAnOval

imAnImage more. ..

What about objectse

Primitives

1 2.0 ‘a’ true

imAnInt imADouble imAChar imABoolean more?

Primitives receive a set amount of space on the stack when they are
created! They store a small amount of data.

Primitives

1 2.0 ‘a’ true

imAnInt imADouble imAChar imABoolean more?

Primitives receive a set amount of space on the stack when they are
created! They store a small amount of data.

100 100 Color.BLUE
width height color o
imARect

Objects store LOTS of datal

Primitives

1 2.0 ‘a’ true

imAnInt imADouble imAChar imABoolean more?

Primitives receive a set amount of space on the stack when they are
created! They store a small amount of data.

100 100 Color.BLUE
width height color o
imARect

Objects store LOTS of datal Java chooses to store objects on the heap.

The Heap<ee

The Heap is more permanent memory. Things on the heap
don’t disappear as methods are called or returned.

Why do we care that objects are stored on the heap?

41

Remember: Are They Equal?

public void run(){

GRect rect3 = new GRect(100, 100);

if(rect3 == rect3){
println(“This rectangle is equal to itself!”);
} else {
println(“Actually, this rectangle is not equal to itself.”);

}
}

Remember: This will only evaluate to frue if it's the exact same
rectangle! This has something to do with how objects are stored in
memory.

42
O

Objects

public void run(){

GRect rect = new GRect(100, 100);
rect.setFilled(true);
rect.setColor(Color.BLUE);
add(rect, 100, 100);

run

Like before, we'll put
run() on our stack!

Objects

public void run(){

GRect rect =|new GRect(100, 100);
rect.setFilled(true);
rect.setColor(Color.BLUE);
add(rect, 100, 100);

run

We'll create a GRect.

Remember: we evaluate
the right-hand side first!

Objects

public void run(){

GRect rect =|new GRect(100, 100);
rect.setFilled(true);
rect.setColor(Color.BLUE);
add(rect, 100, 100);

run

Wait a second! Why did it
create a GRect outside of
run()<e

Objects

public void run(){

GRect rect =|new GRect(100

, 100);

rect.setFilled(true);
rect.setColor(Color.BLUE);
add(rect, 100, 100);

run heap:

location 6

Wait a second! Why did it
create a GRect outside of
run()<e

It created our GRect on
the heap!

Objects

public void run(){

GRect rect = new GRect(100, 100);
rect.setFilled(true);
rect.setColor(Color.BLUE);
add(rect, 100, 100);

run

heap:

location 6 ~—_

rect location 6

rect becomes equal to
the location in memory
where our GRect is.

Let's Revisit

public void run(){

GRect rectl
GRect rect2

new GRect(100, 100); // rectl
new GRect(100, 100); // rect2

location 4
location 5

// 1is the memory address of rectl equal to the memory address of rect2?
if(rectl == rect2){

println(“These rectangles are equal!”);
} else {

println(“Actually, these rectangles are not equal.”);

}

48

Let's Revisit

public void run(){

}

GRect rectl
GRect rect2

new GRect(100, 100); // rectl
new GRect(100, 100); // rect2

location 4
location 5

// 1is the memory address of rectl equal to the memory address of rect2?
if(rectl == rect2){
println(“These rectangles are equal!”);
} else {
// no! They’re at different locations in memory!
println(“Actually, these rectangles are not equal.”);

We cannot create two different GRects in the same location in
memory.

49

Another Example

public void run(){

GRect rect4
GRect recth

new GRect(100, 100); // rectd4d = location 10
rect4;

// 1is the memory address of rect4 equal to the memory address of rect5?
if(rectd4 == rect5){

println(“These rectangles are equal!”);
} else {

println(“Actually, these rectangles are not equal.”);

}

50

Another Example

public void run(){

GRect rect4
GRect recth

new GRect(100, 100); // rectd = location 10
rectd;

// is the memory address of rect4 equal to the memory address of rect4?
if(rectd4 == rect5){
// They are equal! They both point to the same place in memory!
println(“These rectangles are equal!”);
} else {
println(“Actually, these rectangles are not equal.”);

}
}
run heap:
location 10 location 10
rectd rect5b location 10

51

What's Going On Here?

Can you have two different versions of the same number?
Can one number 12 be different from another number 12¢

No. Two primitive values will always be equal if they're the
same. Their values are stored on the stack.

52

What's Going On Here?

Can you have two different versions of the same rectangle?¢
Can one rectangle with a width and height of 100 be
different from another rectangle with a width and height of
100%¢

Yes. Two rectangles are only the same if the value of their
memory addresses are the same. Each rectangle is stored on
the heap while the value of their memory address can be
stored on the stack.

53

Pass by Reference vs Value

If something is passed by reference, it can be altered simply
by passing it into a method. This is because we are passing in
a reference to its location in memory, not a copy of the
object.

If something is passed by value, it cannot be altered simply
by passing it into a method. This is because we are a passing
in a copy of its value.

54

What Happens Heree

public void run(){
int size = 250;
GRect rectl = new GRect(size, size);
GRect rect2 = rectl;
changeSize(rect2, size);
add(rectl, 100, 100);

}

private void changeSize(GRect rect, double size){
size += 250;
rect.setSize(size, size);

55

What Happens Heree

public void run(){
int size = 250;
GRect rectl = new GRect(size, size);
GRect rect2 = rectl;
changeSize(rect2, size);
add(rectl, 100, 100);

}

private void changeSize(GRect rect, double size){
size += 250;
rect.setSize(size, size);

}

stack:
run heap:

250 location 16 location 16

size rectl rect2 location 16

56
O

What Happens Heree

public void run(){
int size = 250;
GRect rectl = new GRect(size, size);
GRect rect2 = rectl;
|changeSize(rect2, size);|
add(rectl, 100, 100);

}

private void changeSize(GRect rect, double size){
size += 250;
rect.setSize(size, size);

}

stack:
run heap:

250 location 16 location 16

size rectl rect2 location 16

57
O

What Happens Heree

public void run(){

private void changeSize(GRect rect, double size){
size += 250;
rect.setSize(size, size);

stack:
run heap:

changeSize

location 16 250

location 16

— rect size

58

What Happens Heree

public void run(){

private void changeSize(GRect rect, double size){
size += 250;
rect.setSize(size, size);

stack:
run

heap:

changeSize

location 16 500

— rect size

location 16

59

What Happens Heree

public void run(){

private void changeSize(GRect rect, double size){
size += 250;
rect.setSize(size, size);

stack:
run heap:

changeSize

location 16 500

— rect size

location 16

60
O

What Happens Heree

public void run(){
int size = 250;
GRect rectl = new GRect(size, size);
GRect rect2 = rectl;
changeSize(rect2, size);
Pdd(rectl, 100, 100)4

¥

private void changeSize(GRect rect, double size){
size += 250;
rect.setSize(size, size);

}

stack: heap:
run

250 location 16 location 16

size rectl rect2

location 16 61
NN ———————— TSNS

What Happens Heree

Name Value
=+ no method return value
P o this ChangingSize (id=29)
O size 250
Cerecti GRectd=e®) | |
> @ rect2 GRect (id=68)

GRect [bounds=(0.0, 0.0, 500.0, 500.0), filled=false, fillColor=BLACK]

heap:

stack:

run
250 location 16 location 16
size rectl rect2

location 16

62

Stack Too Talle

’

What happens if there's too
many things on the stack?

Stack Overtlow!

Plan for Today

Review: Pass by Reference vs. Value, Eclipse Debugger
Equality: Primitives and Objects

Primitives on the Stack

Objects on the Heap

Why This Matters!

65

