
Memory

CS106A, Summer 2019
Sarai Gould && Laura Cruz-Albrecht

Lecture 12



Announcements

● SCPD OH only for SCPD students
● Midterm in 1 week…

○ In-Person Review Session on Friday, at 10:30am in Gates B01
○ Midterm will be 7pm - 9pm in Bishop

2



Plan for Today

● Review: Pass by Reference vs. Value, Eclipse Debugger
● Equality: Primitives and Objects
● Primitives on the Stack
● Objects on the Heap
● Why This Matters!

3



Pass by Reference

Objects are passed by reference.

A few examples:

Pass by Value

Primitives are passed by value.

A few examples:

4

Pass by Reference vs Value

int

double

char

GRect

GOval

GImage
boolean



Pass by Reference vs Value

What does this mean?
If something is passed by reference, it can be altered simply 
by passing it into a method.

If something is passed by value, it cannot be altered simply 
by passing it into a method.

5



Types of Errors
Syntax Errors:

A programming “typo”. Usually causes a red squiggly line in code.

Execution Errors:

Something that crashes the program after you run it.

Logic Errors:

All of your code runs, but it produces unexpected results.

6



How Can We Debug Errors?

Using the Eclipse Debugger!

7



Debugger Commands

8



Variables View

9

I can view what my 
variables are currently 
equal to by opening 
the “Variables” View.

How?
● Click Window
● Click Show View
● Click Other…
● Search for Variables
● Click Variables



Setting a Breakpoint
To start the debugger, it helps 
to set a breakpoint. Double 
click next to the line number 
where you want to set a 
breakpoint. This will create a 
little blue dot, or breakpoint.

Your code will stop and start 
the debugger when it sees the 
breakpoint.

10



Are They Equal?

11

public void run(){

int num1 = 12;
int num2 = 12;

if(num1 == num2){
println(“These integers are equal!”);

} else {
println(“Actually, these integers are not equal.”);

}
}



Are They Equal?

12

public void run(){

GRect rect1 = new GRect(100, 100);
GRect rect2 = new GRect(100, 100);

if(rect1 == rect2){
println(“These rectangles are equal!”);

} else {
println(“Actually, these rectangles are not equal.”);

}
}



Are They Equal?

13

public void run(){

GRect rect3 = new GRect(100, 100);

if(rect3 == rect3){
println(“This rectangle is equal to itself!”);

} else {
println(“Actually, this rectangle is not equal to itself.”);

}
}



What’s Going On Here?

Can you have two different versions of the same number? 
Can one number 12 be different from another number 12?

14



What’s Going On Here?

Can you have two different versions of the same number? 
Can one number 12 be different from another number 12?

Can you have two different versions of the same rectangle? 
Can one rectangle with a width and height of 100 be 
different from another rectangle with a width and height of 
100?

15



What’s Going On Here?

You can have two different rectangles with the same 
properties, but you can’t have two different number 12s.

Being the same thing is different from having the same 
properties.

16



Are They Equal?

17

public void run(){

GRect rect3 = new GRect(100, 100);

if(rect3 == rect3){
println(“This rectangle is equal to itself!”);

} else {
println(“Actually, this rectangle is not equal to itself.”);

}
}

This will only evaluate to true if it’s the exact same rectangle! Let’s look 
into why.



Memory!

18

Hey Duke!
Karel! So good to see you. 
um, will Sarai delete us?

Well, you’ll always be in my memory
Heap or stack?

Heap ofc
Now that’s true friendship <3



What Happened: Primitive
public void run(){

int primitiveInt = 0;
changeInt(primitiveInt);
GLabel intLabel = new 

GLabel(“primitiveInt: “ + primitiveInt, 
0, 50);

add(intLabel);

...

private void changeInt(int primitiveInt){

primitiveInt += 10;
}

Remember, in Thursday’s 
example, when we called a 
new method, we put a box 
representing our method on 
top of the box representing 
run().

We created a stack. 



What Happened: Primitive
public void run(){

int primitiveInt = 0;
changeInt(primitiveInt);
GLabel intLabel = new 

GLabel(“primitiveInt: “ + primitiveInt, 
0, 50);

add(intLabel);

...

private void changeInt(int primitiveInt){

primitiveInt += 10;
}

We created a stack. 

The computer does the 
same thing!

It creates a stack of things 
to keep track of in its 
temporary memory.



What Happened: Primitive
public void run(){

int primitiveInt = 0;
changeInt(primitiveInt);
GLabel intLabel = new 

GLabel(“primitiveInt: “ + primitiveInt, 
0, 50);

add(intLabel);

...

private void changeInt(int primitiveInt){

primitiveInt += 10;
}

The computer creates a 
stack of things to keep 
track of in its temporary 
memory.

And when the computer is 
done with something on the 
stack?



What Happened: Primitive
public void run(){

int primitiveInt = 0;
changeInt(primitiveInt);
println(“primitiveInt: “ + primitiveInt, 0, 50);

...

The old item in memory is 
removed from the stack!



An Example: Stack
public void run(){

firstMethodCall()

...
}

The stack stores method 
calls and local variables in 
our program.

Right now run() is on the 
top of the stack.



An Example: Stack
public void run(){

firstMethodCall()

...

The stack stores method 
calls and local variables in 
our program.

Right now 
firstMethodCall() is on the 
top of the stack.

public void firstMethodCall(){

secondMethodCall()

...
}



An Example: Stack
public void run(){

firstMethodCall()

...

Right now 
secondMethodCall() is on 
the top of the stack.

And so it continues.

public void firstMethodCall(){

secondMethodCall()

...public void secondMethodCall(){

thirdMethodMethodCall()

...

}



An Example: Stack
public void run(){

int num1 = 18;

int num2 = 13;

double answer = average(num1, num2);
}

Right now run() is on the top of 
the stack.

We will create a new stack 
frame for it.

run



An Example: Stack
public void run(){

int num1 = 18;

int num2 = 13;

double answer = average(num1, num2);
}

As we create local variables, 
they are added to our stack as 
well.

Local variables are variables 
created within our current 
scope.

run

num1

18



An Example: Stack
public void run(){

int num1 = 18;

int num2 = 13;

double answer = average(num1, num2);
}

As we create local variables, 
they are added to our stack as 
well.

Local variables are variables 
created within our current 
scope.

run

num1

18

num2

13



An Example: Stack
public void run(){

int num1 = 18;

int num2 = 13;

double answer = average(num1, num2);
}

Look, we see a new method!

Remember, we always 
evaluate the right side first!

num1

18

run

num2

13



An Example: Stack
public void run(){

int num1 = 18;

int num2 = 13;

double answer = average(num1, num2);
}

Look, we see a new method!

(Remember, we always 
evaluate the right side first!)

What do we do now?

num1

18

run

num2

13



An Example: Stack
public void run(){

int num1 = 18;

int num2 = 13;

double average = calculateAverage(5, 10);
}

Create a new stack frame!

Every time a new method is 
called we create a new stack 
frame and copy the parameter 
values that were passed in!

num1

18

run

num2

13

private double average(double a, double b){

double sum = a + b;
return sum / 2;

}

average

a

18.0

b

13.0



An Example: Stack
public void run(){

int num1 = 18;

int num2 = 13;

double average = calculateAverage(5, 10);
}

As new local variables are 
created, we created new 
boxes for them and add them 
to the stack as well!

num1

18

run

num2

13

private double average(double a, double b){

double sum = a + b;
return sum / 2;

}

average

a

18.0

b

13.0

sum

31.0



An Example: Stack
public void run(){

int num1 = 18;

int num2 = 13;

double average = calculateAverage(5, 10);
}

When we return this allows a 
method to pass information 
back to the caller.

The caller is the method that 
called our current method.

num1

18

run

num2

13

private double average(double a, double b){

double sum = a + b;
return sum / 2;

}

average

a

18.0

b

13.0

sum

31.0



An Example: Stack
public void run(){

int num1 = 18;

int num2 = 13;

double answer = average(num1, num2);
}

When average returned, we 
removed it from the stack 
frame!

This removed it from memory as 
well as all of the local variables 
it created!

num1

18

run

num2

13

answer

15.5



Primitives

All of the primitive variables we create in memory have a fixed size.

All ints receive the same amount of space, all doubles receive the same 
amount of space, etc...

imAnInt

1

imADouble

2.0

more?

...

imABoolean

true

imAChar

‘a’



Primitives

ints receive 4 bytes.

doubles receive 8 bytes.

chars receive 2 bytes.

booleans are less precisely defined, but still a primitive!

imAnInt

1

imADouble

2.0

imABoolean

true

imAChar

‘a’

more?

...



Objects

What about objects?

imARect imAnOval imAnImage more...

...



Primitives

Primitives receive a set amount of space on the stack when they are 
created! They store a small amount of data.

imAnInt

1

imADouble

2.0

imABoolean

true

imAChar

‘a’

more?

...



Primitives

Primitives receive a set amount of space on the stack when they are 
created! They store a small amount of data.

imAnInt

1

imADouble

2.0

imABoolean

true

imAChar

‘a’

more?

imARect

...

width

100

height

100

color

Color.BLUE

more?

...

Objects store LOTS of data!



Primitives

Primitives receive a set amount of space on the stack when they are 
created! They store a small amount of data.

imAnInt

1

imADouble

2.0

imABoolean

true

imAChar

‘a’

more?

imARect

...

width

100

height

100

color

Color.BLUE

more?

...

Objects store LOTS of data! Java chooses to store objects on the heap.



The Heap??

The Heap is more permanent memory. Things on the heap 
don’t disappear as methods are called or returned.

Why do we care that objects are stored on the heap?

41



Remember: Are They Equal?

42

public void run(){

GRect rect3 = new GRect(100, 100);

if(rect3 == rect3){
println(“This rectangle is equal to itself!”);

} else {
println(“Actually, this rectangle is not equal to itself.”);

}
}

Remember: This will only evaluate to true if it’s the exact same 
rectangle! This has something to do with how objects are stored in 
memory.



Objects
Like before, we’ll put 
run() on our stack!

public void run(){

GRect rect = new GRect(100, 100);
rect.setFilled(true);
rect.setColor(Color.BLUE);
add(rect, 100, 100);

}

run



Objects
We’ll create a GRect.

Remember: we evaluate 
the right-hand side first!

public void run(){

GRect rect = new GRect(100, 100);
rect.setFilled(true);
rect.setColor(Color.BLUE);
add(rect, 100, 100);

}

run



Objects
Wait a second! Why did it 
create a GRect outside of 
run()?

public void run(){

GRect rect = new GRect(100, 100);
rect.setFilled(true);
rect.setColor(Color.BLUE);
add(rect, 100, 100);

}

run



Objects
Wait a second! Why did it 
create a GRect outside of 
run()?

It created our GRect on 
the heap!

public void run(){

GRect rect = new GRect(100, 100);
rect.setFilled(true);
rect.setColor(Color.BLUE);
add(rect, 100, 100);

}

run heap:

location 6



Objects
rect becomes equal to 
the location in memory 
where our GRect is.

rect

public void run(){

GRect rect = new GRect(100, 100);
rect.setFilled(true);
rect.setColor(Color.BLUE);
add(rect, 100, 100);

}

run heap:

location 6

location 6



Let’s Revisit

48

public void run(){

GRect rect1 = new GRect(100, 100); // rect1 = location 4
GRect rect2 = new GRect(100, 100); // rect2 = location 5

// is the memory address of rect1 equal to the memory address of rect2?
if(rect1 == rect2){

println(“These rectangles are equal!”);
} else {

println(“Actually, these rectangles are not equal.”);
}

}



Let’s Revisit

49

public void run(){

GRect rect1 = new GRect(100, 100); // rect1 = location 4
GRect rect2 = new GRect(100, 100); // rect2 = location 5

// is the memory address of rect1 equal to the memory address of rect2?
if(rect1 == rect2){

println(“These rectangles are equal!”);
} else {

// no! They’re at different locations in memory!
println(“Actually, these rectangles are not equal.”);

}
}

We cannot create two different GRects in the same location in 
memory.



Another Example

50

public void run(){

GRect rect4 = new GRect(100, 100); // rect4 = location 10
GRect rect5 = rect4;

// is the memory address of rect4 equal to the memory address of rect5?
if(rect4 == rect5){

println(“These rectangles are equal!”);
} else {

println(“Actually, these rectangles are not equal.”);
}

}



Another Example

51

public void run(){

GRect rect4 = new GRect(100, 100); // rect4 = location 10
GRect rect5 = rect4;

// is the memory address of rect4 equal to the memory address of rect4?
if(rect4 == rect5){

// They are equal! They both point to the same place in memory!
println(“These rectangles are equal!”);

} else {
println(“Actually, these rectangles are not equal.”);

}
}

rect4

run heap:

location 10

location 10

rect5

location 10



What’s Going On Here?

Can you have two different versions of the same number? 
Can one number 12 be different from another number 12?

No. Two primitive values will always be equal if they’re the 
same. Their values are stored on the stack.

52



What’s Going On Here?

Can you have two different versions of the same rectangle? 
Can one rectangle with a width and height of 100 be 
different from another rectangle with a width and height of 
100?

Yes. Two rectangles are only the same if the value of their 
memory addresses are the same. Each rectangle is stored on 
the heap while the value of their memory address can be 
stored on the stack.

53



Pass by Reference vs Value
If something is passed by reference, it can be altered simply 
by passing it into a method. This is because we are passing in 
a reference to its location in memory, not a copy of the 
object.

If something is passed by value, it cannot be altered simply 
by passing it into a method. This is because we are a passing 
in a copy of its value.

54



What Happens Here?

55

public void run(){

int size = 250;
GRect rect1 = new GRect(size, size);
GRect rect2 = rect1;
changeSize(rect2, size);
add(rect1, 100, 100);

}

private void changeSize(GRect rect, double size){

size += 250;
rect.setSize(size, size);

}



What Happens Here?

56

public void run(){

int size = 250;
GRect rect1 = new GRect(size, size);
GRect rect2 = rect1;
changeSize(rect2, size);
add(rect1, 100, 100);

}

private void changeSize(GRect rect, double size){

size += 250;
rect.setSize(size, size);

}

size

run heap:

location 16

250

rect1

location 16

stack:

rect2

location 16



What Happens Here?

57

heap:

location 16size

run

250

rect1

location 16

stack:

rect2

location 16

public void run(){

int size = 250;
GRect rect1 = new GRect(size, size);
GRect rect2 = rect1;
changeSize(rect2, size);
add(rect1, 100, 100);

}

private void changeSize(GRect rect, double size){

size += 250;
rect.setSize(size, size);

}



What Happens Here?

58

public void run(){

int size = 250;
GRect rect = new GRect(size, size);
changeSize(rect, size);
add(rect, 100, 100);

}

private void changeSize(GRect rect, double size){

size +=

size

run heap:

location 16

250

rect

location 16

private void changeSize(GRect rect, double size){

size += 250;
rect.setSize(size, size);

}

rect

changeSize

location 16

size

250

stack:



What Happens Here?

59

public void run(){

int size = 250;
GRect rect = new GRect(size, size);
changeSize(rect, size);
add(rect, 100, 100);

}

private void changeSize(GRect rect, double size){

size +=

size

run heap:

location 16

250

rect

location 16

private void changeSize(GRect rect, double size){

size += 250;
rect.setSize(size, size);

}

rect

changeSize

location 16

size

500

stack:



What Happens Here?

60

public void run(){

int size = 250;
GRect rect = new GRect(size, size);
changeSize(rect, size);
add(rect, 100, 100);

}

private void changeSize(GRect rect, double size){

size +=

size

run heap:

location 16

250

rect

location 16

private void changeSize(GRect rect, double size){

size += 250;
rect.setSize(size, size);

}

rect

changeSize

location 16

size

500

stack:



What Happens Here?

61

public void run(){

int size = 250;
GRect rect1 = new GRect(size, size);
GRect rect2 = rect1;
changeSize(rect2, size);
add(rect1, 100, 100);

}

private void changeSize(GRect rect, double size){

size += 250;
rect.setSize(size, size);

}

location 16

heap:

size

run

250

rect1

location 16

stack:

rect2

location 16



What Happens Here?

62location 16

heap:

size

run

250

rect1

location 16

stack:

rect2

location 16



Stack Too Tall?

63

What happens if there’s too 
many things on the stack?



Stack Overflow!

64

Oh 
dear...



Plan for Today

● Review: Pass by Reference vs. Value, Eclipse Debugger
● Equality: Primitives and Objects
● Primitives on the Stack
● Objects on the Heap
● Why This Matters!

65


