Characters and Strings

Lecture 13

CS106A, Summer 2019
Sarai Gould && Laura Cruz-Albrecht

With inspiration from slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, Chris Piech, Brahm Capoor and others.

X~

Announcements: Midterm

e Midterm: Monday July 22nd, 7-9PM in Bishop Auditorium
e Review session: Friday July 19th, 10:30AM in Gates BO1

e If you have an academic or University conflict, email both

instructors and fill out the following form by tonight 7/16
o hitp://bit.ly/CS106AMiIdtermConflicts

http://bit.ly/CS106AMidtermConflicts

Announcements: Midterm

e Download BlueBook software on website
e Make sure you have two-factor authentication on Duo

Mobile with passcodes set up; will need for submission

o Two-Factor Authentication: Duo Mobile
o How 1o Use the Duo Mobile Passcode for Two-Step Authentication

e Check out Website for other relevant Midterm information

https://web.stanford.edu/group/phs-dc/cgi-bin/wordpress/phs-linux-server/two-factor-authentication-duo-push/?fbclid=IwAR2sfEsKlKRtcafeB6l3RhblQ9ikLXaTfVuEQ3DqUX3Rk3u4QMW-roMJiEs
https://uit.stanford.edu/service/authentication/twostep/passcode?fbclid=IwAR00pCFyDOqzk4IKq38_m25RO3XODjBYqEPuni_d1kyZM4eQKIMoedVL7KU

Plan for Today

e Review: Memory
e Characters
e Sirings

Plan for Today

e Review: Memory
e Characters
e Sirings

Review: Memory

Primitives
passed by value

stored on the stack

Objects
passed by reference

stored on the heap,
referred to from the stack

Review: Stack vs. Heap

The Stack is more temporary The Heap is more permanent
memory. Things on the Stack are memory. Things on the Heap
added and removed as methods don’t disappear as methods are
are called and returned. called or returned.

The Stack /" TheHeap

Review: Stack vs. Heap

int x = 22;

The Stack

/" TheHeap

Review: Stack vs. Heap

int x = 22;

The Stack /" TheHeap

X 22

Review: Stack vs. Heap

int x = 22;
GRect rectl = new GRect(30, 10);

The Stack /" TheHeap

X 22

Review: Stack vs. Heap

int x = 22;
GRect rectl =|new GRect(30, 10)|;

The Stack /" TheHeap

X 22

s | mmm |

")

Review: Stack vs. Heap

int x = 22;

GRect rectl = new GRect(30, 10)|;

The Stack /" TheHeap
X 22
—> 4 [N]
rectl 4

")

Review: Stack vs. Heap

int x = 22;
GRect rectl
GRect rect2

new GRect(30, 10);
new GRect(10, 10);

The Stack /" TheHeap
X 22
—> 4 [N]
rectl 4

Review: Stack vs. Heap

int x = 22;
GRect rectl
GRect rect2

new GRect(30, 10);
new GRect(10, 10);

The Stack /" TheHeap
X 22 _ X
— 4 | N
rectl 4 > g
rect2 23 \’ 23 | -) /

Review: Stack vs. Heap

int x = 22;
GRect rectl
GRect rect2

new GRect(30, 10);
new GRect(10, 10);

The Stack " TheHeap
X 22 .
—> 4 N
rectl 4 >
rect2 | 23 \’2— n —) /
== compares .equals() compares

values in the Stack objects on the Heap 15

Review: Are They Equal?¢ #1

public void run(){

}

GRect rectl
GRect rect2

new GRect(100, 100); // rectl
new GRect(100, 100); // rect2

location 4
location 5

// 1is the memory address of rectl equal to the memory address of rect2?
if(rectl == rect2){
println(“These rectangles are equal!”);
} else {
// no! They’re at different locations in memory!
println(“Actually, these rectangles are not equal.”);

We cannot create two different GRects in the same location in
memory.

Review: Are They Equale #2

public void run(){
GRect rect3 = new GRect(100, 100);

if(rect3 == rect3){
// This is true!
println(“This rectangle is equal to itself!”);

} else {
println(“Actually, this rectangle is not equal to itself.”);

}

}

Remember: This will only evaluate to true if it's the exact same
rectangle! This has something to do with how objects are stored in
memory.

17

Review: Are They Equale #3

public void run(){

GRect rect4
GRect recth

new GRect(100, 100); // rectd = location 10
rect4; // rect5 also stores location 10

// is the memory address of rect4 equal to the memory address of rect4?
if(rectd4 == rect5){
// They are equal! They both point to the same place in memory!
println(“These rectangles are equal!”);
} else {
println(“Actually, these rectangles are not equal.”);

}
}
run heap:
location 10 location 10
rectd rect5b location 10

Pass by Reference vs Value

If something is passed by reference, it can be altered simply
by passing it into a method. This is because we are passing in
a reference to its location in memory, not a copy of the
object.

If something is passed by value, it cannot be altered simply
by passing it into a method. This is because we are a passing
iIn a copy of its value.

Plan for Today

e Review: Memory
e Characters
e Sirings

20

Text Processing

Text Processing

Text Processing

i like ice cream X Mi piace il gelato

‘ 0 ¢ O 0

23

Text Processing

English + & ltalian +
i like ice cream X Mi piace il gelato
‘ 0 ¢ 0 0

24

Text Processing

English + & ltalian +
i like ice cream X Mi piace il gelato E
‘ 0 ¢ O 0

25

Text Processing

English + & ltalian «

i like ice cream X Mi piace il gelato

0 ¢ 0 0

Text Processing

English « ltalian «

i like ice cream X Mi piace il gelato

ED) ®» 10

(=

Gmail display language: En,
Change language settings folliiialaid
Show all language options

Marie Brewis (idg.co.uk)

Smart c“w . Smart Compose

Gmail gives you writing .

suggestions on Hello. This is a test to see whether Smart Compose actually makes any useful
as you type. You

unmﬂundyfoi'r‘lm suggestions

Ask before displaying ext

Send cancellation period: | 5

mpose: © Writing suggestions on
suggestions appearas s 2
T Writing suggestions off

hmai)

Lhaheviae Dank:

27

Plan for Today

e Review: Memory
e Characters
e Sirings

28

A char is a variable type that represents a single character or “glyph”.

char letterA = 'A’;

29

A char is a variable type that represents a single character or “glyph”.

Single quotes!

'
char letterA = ®AY;

30

A char is a variable type that represents a single character or “glyph”.

char letterA = 'A';
char plus = "+';
char zero = '0';
char space = ' ';

31

A char is a variable type that represents a single character or “glyph”.

char letterA = 'A';
char plus = "+';
char zero = '0';
char space = ' ';

// special characters
char newLine = '\n';
char tab = "\t';

char singleQuote = "y
char backSlash = '\\';

32
O

Under the hood, Java represents each char as an infeger.

This integer is its *ASCII" value.

33

ASCII

Code | Char | Code | Char | Code | Char | Code | Char | Code | Char | Code Char
32 |[space]| 48 0 64 @ 80 P 96 12 p
33 | 49 1 65 A 81 Q 97 a 113 q
34 " 50 2 66 B 82 R 98 b 114 r
35 B 51 3 67 C 83 S 99 ¢ 1156 3
36 $ b2 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u
38 & 54 6 70 F 86 Vv 102 f 118 v
39 ' 55 7 7 G 87 W 103 g 119 w
40 { 56 8 72 H 88 X 104 h 120 X
41) 57 9 73 | 89 Y 105 i 121 y
42 58 : 74 J 90 Z 106 i 122 z
43 + 59 - 75 K 91 [107 " 123 {
44 , 60 < 76 L 92 \ 108 | 124 |
45 - 61 = 77 M 93] 109 m 125 }
46 : 62 > 78 N 94 . 110 n 126 ~
47 / 63 ? 79 o) 95 111 0 127 | [backspace]

* This is only the first half of the table

** ASCIl: American Standard Code for Information Interchange 34
s

ASCII

Code | Char | Code | Char | Code | Char | Code | Char | Code | Char | Code Char
32 |[space]| 48 0 Labd 80 P 96 112 p
33 | 49 1 65 A l 81 Q 97 a 113 q
34 - 50 2 - 82 R 98 b 114 r
35 B 51 3 67 C 83 S 99 ¢ 1156 3
36 $ b2 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u
38 & 54 6 70 F 86 Vv 102 f 118 v
39 ' 55 7 7 G 87 W 103 g 119 w
40 { 56 8 72 H 88 X 104 h 120 X
41) 57 9 73 | 89 Y 105 i 121 y
42 58 : 74 J 90 Z 106 i 122 z
43 + 59 - 75 K 91 [107 " 123 {
44 , 60 < 76 L 92 \ 108 | 124 |
45 - 61 = 77 M 93] 109 m 125 }
46 : 62 > 78 N 94 . 110 n 126 ~
47 / 63 ? 79 o) 95 111 0 127 | [backspace]

* This is only the first half of the table

char uppercaseA = 'A’; // Actually 65

35

ASCII

Code | Char | Code | Char | Code | Char | Code | Char | Code | Char | Code Char
32 [space] 48 0 64 @ 80 P et 112 P
33 | 49 1 65 A 81 Q 97 a 113 q
34 - 50 2 66 B 82 R ™M@ T =14 r
35 B 51 3 67 C 83 S 99 ¢ 115 s
36 $ b2 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 0] 101 e 117 u
38 & 54 6 70 F 86 Vv 102 f 118 v
39 ' 55 7 7 G 87 W 103 g 119 w
40 (56 8 72 H 88 X 104 h 120 X
41) 57 9 73 | 89 Y 105 i 121 y
42 58 - 74 J 90 Z 106 i 122 z
43 + 59 75 K 91 [107 " 123 {
44 60 < 76 L 92 \ 108 | 124 |
45 - 61 = 77 M 93] 109 m 125 }
46 : 62 > 78 N 94 . 110 n 126 ~
47 / 63 ? 79 0 95 111 0 127 | packspace]

* This is only the first half of the table

char uppercaseA = 'A’ // Actually 65
char lowercaseA ‘a’ // Actually 97

Il
o o

o o

36

ASCII

Code | Char Code | Char | Code | Char | Code | Char | Code Char
32 |[space]l] 48 0 64 @ 80 b 96 112 p
33 | 65 A 81 Q 97 a 113 q
34 - 50 2 66 B 82 R 98 b 114 r
35 B 51 3 67 C 83 S 99 ¢ 115 s
36 $ b2 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 0] 101 e 117 u
38 & 54 6 70 F 86 Vv 102 f 118 v
39 ' 55 7 7 G 87 W 103 g 119 w
40 (56 8 72 H 88 X 104 h 120 X
41) 57 9 73 | 89 Y 105 i 121 y
42 58 - 74 J 90 Z 106 i 122 z
43 + 59 75 K 91 [107 " 123 {
44 60 < 76 L 92 \ 108 | 124 |
45 - 61 = 77 M 93] 109 m 125 }
46 : 62 > 78 N 94 . 110 n 126 ~
47 / 63 ? 79 0 95 111 0 127 | packspace]

* This is only the first half of the table

char uppercaseA = 'A’; // Actually 65
char lowercaseA = 'a’; // Actually 97
char zeroDigit = '@'; // Actually 48 .

Other Useful ASCII Properties

Code | Char | Code | Char | Code | Char | Code | Char | Code | Char | Code Char
32 |[space]| 48 0 P 96 112 p
33 ! 49 1 Q 97 a 113 q
34 - 50 2 R 98 b 114 r
35 B 51 3 S 99 ¢ 1156 3
36 $ b2 4 T 100 d 116 t
37 % 53 5 U 101 e 117 u
38 & 54 6 Vv 102 f 118 v
39 55 7 W 103 g 119 w
40 { 56 8 X 104 h 120 X
41) 57 9 Y 105 i 121 y
42 . 58 : Z 106 i 122 z
43 + 59 [107 " 123 {
44 \ 60 < \ 108 | 124 |
45 - 61 =] 109 m 125 }
46 62 . 110 n 126 ~
47 / 63 ? 111 0 127 | [backspace]

e Uppercase letters are sequential ('A" -> 'Z")

38

Other Useful ASCII Properties

Code | Char | Code | Char | Code | Char | Code | Char | Code | Char | Code Char
32 |[space]| 48 0 64 @ 80 P 98 e 112 p
33 | 49 1 65 A 81 Q 97 a 113 q
34 " 50 2 66 B 82 R 114 r
35 B 51 3 67 C 83 S 99 ¢ 1156 3
36 $ b2 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 0] 101 e 117 u
38 & 54 6 70 F 86 Vv 102 f 118 v
39 ' 55 7 7 G 87 W 103 g 119 w
40 { 56 8 72 H 88 X 104 h 120 X
41) 57 9 73 | 89 Y 105 i 121 y
42 58 : 74 J 90 Z 106 i 122 z
43 + 59 75 K 91 [107 " 123 {
44 60 < 76 L 92 \ 108 | 124 |
45 - 61 = 77 M 93] 109 m 125 }
46 62 78 N 94 . 110 n 126 ~
47 / 63 ? 79 o) 95 111 0 127 | [backspace]

e Uppercase letters are sequential ('A" -> 'Z")
e |Lowercase letters are sequential ('a' -> 'z")

39

Other Useful ASCII Properties

Char | Code | Char | Code | Char | Code Char
@ 80 b 96 112 p
A 81 Q 97 a 13 q
B 82 R 98 b 114 r
C 83 S 99 ¢ 115 s
D 84 T 100 d 116 t
E 85 0] 101 e 117 u
F 86 Vv 102 f 118 v
G 87 W 103 g 119 w
H 88 X 104 h 120 X
| 89 Y 105 i 121 y
J 90 Z 106 i 122 z
K 91 [107 a3 123 {
L 92 \ 108 | 124 |
M 93] 109 m 125 }
N 94 - 110 n 126 ~
o) 95 111 0 127 | [backspace]

e Uppercase letters are sequential ('A" -> 'Z")
e Lowercase letters are sequential ('a' -> 'z')
e Digits are sequential (‘@' -> '9")
40
O

Char Math

We can take advantage
of Java representing each
char as an integer!

/

Char Math

boolean areEqual = 'A' == 'A’; // true

42

Char Math

boolean areEqual = 'A' == 'A’; // true
boolean earlierlLetter = 'f' < 'c'; // false

43

Char Math

boolean areEqual = 'A' == 'A’; // true
boolean earlierlLetter = 'f' < 'c'; // false
char uppercaseB = 'A"' + 1; // 'B’

44

Char Math

boolean areEqual = 'A' == 'A’; // true
boolean earlierlLetter = 'f' < 'c'; // false
char uppercaseB = 'A"' + 1; // 'B’
int diff = 'c¢' - 'a'; // 2

45

Char Math

boolean areEqual = 'A' == 'A’; // true
boolean earlierlLetter = 'f' < 'c'; // false
char uppercaseB = 'A"' + 1; // 'B’
int diff = 'c¢' - 'a'; // 2

int alphabetSize = 'z' - 'a' + 1;

// or

int alphabetSize = 'Z' - 'A' + 1;

46

Revisiting our Friend, For Loops

// prints the numbers 1 to 20 If chars are ints
. . . . under the hood
for (int 1 = 1; i <= 20; i++) { can we use chars for

the loop variable?

println(i);

47

Char Math

// prints the characters a to z
for (char ch = "a'; ch <= 'z"; ch++) {
println(ch);

48

Char Math

Not every integer maps to a character. So when you have an
expression with ints and chars, Java picks int as the most
expressive type.

49

Char Math

Not every integer maps to a character. So when you have an
expression with ints and chars, Java picks int as the most
expressive type.

Recall the expressive hierarchy:
String > double > int > char > boolean

50

Char Math

Not every integer maps to a character. So when you have an
expression with ints and chars, Java picks int as the most
expressive type.

A+ 1

51

Char Math

Not every integer maps to a character. So when you have an
expression with ints and chars, Java picks int as the most
expressive type.

A + 1
char, int
with ASCII
value 65

52

Char Math

Not every integer maps to a character. So when you have an
expression with ints and chars, Java picks int as the most
expressive type.

"A' + 1 // evaluates to 66 (int)
char, int Answer will
with ASCII be an int
value 65

53

Char Math

Not every integer maps to a character. So when you have an
expression with ints and chars, Java picks int as the most
expressive type.

"A' + 1 // evaluates to 66 (int)
'c' + (2 *5) -1 // evaluates to 108

54

Char Math

Not every integer maps to a character. So when you have an
expression with ints and chars, Java picks int as the most

expressive type.

"A' + 1 // evaluates to 66 (int)
'c' + (2 *5) -1 // evaluates to 108

We can make it a char by putting it in a char variable.

55

Char Math

Not every integer maps to a character. So when you have an
expression with ints and chars, Java picks int as the most
expressive type.

"A' + 1 // evaluates to 66 (int)
'c' + (2 *5) -1 // evaluates to 108

We can make it a char by putting it in a char variable.

char uppercaseB = 'A"'" + 1;

char alsoUppercaseB = 66;
56

Type-Casting

If we want to force Java to freat an expression as a particular
type, we can also cast it to that type.

57

Type-Casting

If we want to force Java to freat an expression as a particular
type, we can also cast it to that type.

‘At + 1 // evaluates to 66 (int)

58

Type-Casting

If we want to force Java to freat an expression as a particular
type, we can also cast it to that type.

‘At + 1 // evaluates to 66 (int)
(char)('A" + 1) // evaluates to 'B' (char)

59

Type-Casting

If we want to force Java to freat an expression as a particular
type, we can also cast it to that type.

‘At + 1 // evaluates to 66 (int)
(char)('A" + 1) // evaluates to 'B' (char)
(char)'A" + 1 // evaluates to 66 (int)

60

Type-Casting

If we want to force Java to freat an expression as a particular
type, we can also cast it to that type.

‘At + 1 // evaluates to 66 (int)
(char)('A" + 1) // evaluates to 'B' (char)
(char)'A" + 1 // evaluates to 66 (int)
1/ 2 // evaluates to @ (int)

61

Type-Casting

If we want to force Java to freat an expression as a particular
type, we can also cast it to that type.

‘At + 1 // evaluates to 66 (int)
(char)('A" + 1) // evaluates to 'B' (char)
(char)'A" + 1 // evaluates to 66 (int)

1/ 2 // evaluates to @ (int)
(double)l / 2 // evaluates to 0.5 (double)

62

Type-Casting

If we want to force Java to freat an expression as a particular
type, we can also cast it to that type.

‘At + 1 // evaluates to 66 (int)
(char)('A" + 1) // evaluates to 'B' (char)
(char)'A" + 1 // evaluates to 66 (int)

1/ 2 // evaluates to @ (int)
(double)l / 2 // evaluates to 0.5 (double)
1 / (double)2 // evaluates to 0.5 (double)

63

Type-Casting

If we want to force Java to freat an expression as a particular
type, we can also cast it to that type.

‘AT + 1 //
(char)('A" + 1) //
(char)'A" + 1 //
1/ 2 //
(double)1l / 2 //
1 / (double)2 //

(double)(1 / 2) //

evaluates
evaluates
evaluates

evaluates
evaluates
evaluates

eek! evaluates to 0.0 (double)

to
to
to

to
to
to

66 (int)
'B' (char)
66 (int)

0 (int)
9.5 (double)
0.5 (double)

64

Character Methods

There are several helpful built-in Java methods to manipulate chars.

65

Character Methods

There are several helpful built-in Java methods to manipulate chars.

char lowercaseA = 'a';
char uppercaseA = Character.toUpperCase(lowercaseA);

66

Character Methods

There are several helpful built-in Java methods to manipulate chars.

char lowercaseA = 'a';
char uppercaseA = Character.toUpperCase(lowercaseA);

char plus = "+';
if (Character.islLetter(plus)) {
. // Does not execute: + is not a letter

67

Character Methods

boolean Character.isDigit (char ch)
Determines if the specified character is a digit.

boolean Character.islLetter (char ch)
Determines if the specified character is a letter.

boolean Character.isLetterOrDigit (char ch)
Determines if the specified character is a letter or a digit.

boolean Character.isLowerCase (char ch)
Determines if the specified character is a lowercase letter.

boolean Character.isUpperCase (char ch)
Determines if the specified character is an uppercase letter.

boolean Character.isWhitespace (char ch)
Determines if the specified character is whitespace (spaces and tabs).

char Character. toLowerCase (char ch)
Converts ch to its lowercase equivalent, if any. If not, ch is returned unchanged.

char Character. toUpperCase (char ch)
Converts ch to its uppercase equivalent, if any. If not, ch is returned unchanged.

68
O

Character Methods

toLowerCase and toUpperCase return the new char; they cannot
modify an existing char!

Always save the return value of Character methods!

69

Character Methods

toLowerCase and toUpperCase return the new char; they cannot
modify an existing char!

Always save the return value of Character methods!

char letter = 'a';
Character.toUpperCase(letter); // Does nothing!
println(letter); // prints 'a'

70

Character Methods

toLowerCase and toUpperCase return the new char; they cannot
modify an existing char!

Always save the return value of Character methods!

char letter = 'a';
Character.toUpperCase(letter); // Does nothing!
println(letter); // prints 'a'
char letter = 'a';

char newLetter = Character.toUpperCase(letter);

println(newlLetter); // prints 'A')
71

Plan for Today

e Review: Memory
e Characters
e Sirings

72

Text is stored using the variable type String.
A Stringis a sequence of characters!

String text = “Hello!”;

74

Text is stored using the variable type String.
A Stringis a sequence of characters!

Double quotes!

/
String text = ©Hello!®;

75

Hellol

Hiell|l|o

How it's actually stored

public void run() {
String text = “hello!”;

¥

Stack Heap

Length: 6
Hlell/lio|!

run

———_________——P'

%
\
\

text

’ \ 65

78

String Methods: length

The string.length() method returns the number of characters in
the string. This is one larger than the last valid index in the string.

Hie|l|l|lo]|!

%) 1 2 3 4 5

int strLen = text.length(); // 6

79

String Methods: charAt

The string.charAt(index) method returns the character at a
given index.

H e l l O ! strlen: 6

%) 1 2 3 4 5

char first = text.charAt(9); // “H’

80

String Methods: charAt

The string.charAt(index) method returns the character at a
given index. The index must be between 0 and length - 1.

H e l l O ! strlen: 6

%) 1 2 3 4 5

char first = text.charAt(9); // “H’
char last = text.charAt(strLen - 1); // !’

81

String Methods: charAt

The string.charAt(index) method returns the character at a
given index.

H e l l O ! strlen: 6

%) 1 2 3 4 5

char first = text.charAt(9); // ‘H’
char last = text.charAt(strLen - 1); // !’
char bad = text.charAt(strlLen); // error

82

Exercise

String g =
“Can you think of my favorite hobby?”

83

Exercise

String g =
“Can you think of my favorite hobby?”

%) 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

84

Exercise

String g =
“Can you think of my favorite hobby?”

%) 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

“” + g.charAt(12) + g.charAt(2) + g.charAt(10) + g.charAt(26)

85

Exercise

String g =
“Can you think of my favorite hobby?”

%) 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

“” + g.charAt(12) + g.charAt(2) + g.charAt(10) + g.charAt(26)

Exercise

String g =
“Can you think of my favorite hobby?”

%) 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

“” + g.charAt(12) + g.charAt(2) + g.charAt(10) + g.charAt(26)

* fun fact: also uses Strings

87

Substrings

A substring is a subset of a string.

String str = “Hi Duke!”;
String hi = str.substring(@, 2);

IHI Iil 1 1 IDI Iul Ikl lel I!I

88

Substrings

A substring is a subset of a string.

String str = “Hi Duke!?”;
String dukeExclm = str.substring(3); // to end

IHI Iil 1 1 IDI Iul Ikl Iel I!I

89

Usetul String Methods

int length()
Returns the length of the string

char charAt(int index)
Returns the character at the specified index. Note: Strings indexed starting at 0.

String substring(int pl, int p2)
Returns the substring beginning at p1 and extending up to but not including p2

String substring(int pl)
Returns substring beginning at p1 and extending through end of string.

boolean equals (String s2)
Returns true if string s2 is equal to the receiver string. This is case sensitive.

int compareTo (String s2)
Returns integer whose sign indicates how strings compare in lexicographic order

int indexOf (char ch) or int indexOf (String s)
Returns index of first occurrence of the character or the string, or -1 if not found

String toLowerCase() or String toUpperCase ()
Returns a lowercase or uppercase version of the receiver string

*remember, called using dot notation: myString.length() 20
S

Creating Strings

String str = "Hello, world!";

21

Creating Strings

String str = "Hello, world!";
String empty = "";

92

Creating Strings

String str = "Hello, world!";

String empty = ;

// Read in text from the user
String name = readlLine("What is your name? ");

923

Creating Strings

String str = "Hello, world!";

String empty = ;

// Read in text from the user
String name = readlLine("What is your name? ");

// String concatenation (using “+”)
String message = 2 + " be or not

+ 2 + n belI;

94

Creating Strings

String str = "Hello, world!";

String empty = ;

// Read in text from the user
String name = readlLine("What is your name? ");

// String concatenation (using “+”)
String message = 2 + " be or not

+ 2 + n belI;

int x = 2;
println("x has the value

+ X);

25

Strings are Immutable

Java strings are immutable: once you create a String, its contents
cannot be changed.

// Cannot change individual chars in the string

String typo = "Hello, warld!”;
typo.charAt(8) = ‘0’; // Error! Will not run.

26

Strings are Immutable

Java strings are immutable: once you create a String, its contents
cannot be changed.

// Cannot change individual chars in the string
String typo = "Hello, warld!”;
typo.charAt(8) = ‘0’; // Error! Will not run.

To change a String, you must create a new String containing the
value you want (e.g. using String methods).

String corrected = "Hello, world!”; %7

Strings are Immutable

Important consequence: if you pass a String info a method,
that method cannot modify that string.

String className = "cs 106a";
className.toUpperCase(); // does nothing!

className = className.toUpperCase();
println(className); // CS 106A

98

Are They Equale

public void run(){

String strl = “Hello!”;
String str2 = “Hello!”;

if(strl == str2){
println(“These Strings are equal!”);
} else {

println(“Actually, these Strings are not equal.”);
}

929

Comparing Strings

run

public void run(){

String strl = “Hello!”;
String str2 = “Hello!”;

if(strl == str2){
println(“These Strings are equal!”);
} else {

println(“Actually, these Strings are not equal.”);

}

100

Comparing Strings

run

public void run(){

String strl = “Hello!”;
String str2 = “Hello!”;

if(strl == str2){
println(“These Strings are equal!”);
} else {

println(“Actually, these Strings are not equal.”);

}

101

Comparing Strings

run

public void run(){

Y
0|l
(¢
—
[
o
—/

String strl =|“Hello!”;
String str2 = “Hello!”;

if(strl == str2){
println(“These Strings are equal!”);
} else {

println(“Actually, these Strings are not equal.”);

}

102

Comparing Strings

run
public void run(){ 28

strl

\\

N!r_\

0|l
(¢
—
[
o
—/

String strl = “Hello!”;
String str2 = “Hello!”;

if(strl == str2){
println(“These Strings are equal!”);
} else {

println(“Actually, these Strings are not equal.”);

}

103

Comparing Strings

run
public void run(){ 28

strl

\\

N!r_\

0|l
(¢
—
[
o
—/

String strl = “Hello!”;
String str2 = “Hello!”;

if(strl == str2){
println(“These Strings are equal!”);
} else {

println(“Actually, these Strings are not equal.”);

}

104

Comparing Strings

run
public void run(){ 28 || [Hlell|l|o l]
stril B 28
String strl = “Hello!”;
4 = (13 |J). |
String str2 Hello!”;) [Hiellll|o .]
2
if(strl == str2){ T

println(“These Strings are equal!”);
} else {
println(“Actually, these Strings are not equal.”);

}

105

Comparing Strings

run
public void run(){ 28 || [Hlell|l|o l]
stril B 28
String strl = “Hello!”; 10
String str2 = “Hello!”; — N [H ell|lfo !]
str2
\\\\L‘_g
if(strl == str2){

println(“These Strings are equal!”);
} else {

println(“Actually, these Strings are not equal.”);
}

106

Comparing Strings

run
public void run(){ 28 || [Hlell|l|o l]
stril B 28
String strl = “Hello!”; 10
String str2 = “Hello!”; — N [H ell|lfo !]
str2
\\\\L‘_g
if(strl == str2){

println(“These Strings are equal!”);
} else {

println(“Actually, these Strings are not equal.”);
}

107

Comparing Strings

run
public void run(){ 28 || [Hlell|l|o l]
stril B 28
String strl = “Hello!”; 10
String str2 = “Hello!”; — N [H ell|lfo !]
str2
\\\\L‘_g
if(strl == str2){

println(“These Strings are equal!”);
} else {

println(“Actually, these Strings are not equal.”);

}

108

Instead Use...

strl.equals(str2)

Comparing Strings

public void run(){

String strl = “Hello!”;
String str2 = “Hello!”;

if(strl.equals(str2)){

println(“These Strings have the same text!”);
} else {

println(“These Strings do NOT have the same text.”);

}

110

Comparing Strings

Method Description
sl.equals(s2) whether two strings contain the same characters
sl.equalsIgnoreCase(s2) whether two strings contain the same characters,

ignoring upper vs. lower case

sl.startsWith(s2) whether s1 contains s2’s characters at start
sl.endsWith(s2) whether s1 contains s2’s characters at end
sl.contains(s2) whether s2 is found within s1

111

Looping over Strings

A common String programming pattern is looping over a
String and operating on each character.

for (int 1 = 0; i < str.length(); i++) {

char ch = str.charAt(i);
// do something

112

Looping over Strings

// Creates a new String in all caps
String str = "Hello!";

String newStr = 5

for (int i = 0; i < str.length(); i++) {
char ch = str.charAt(i);
newStr += Character.toUpperCase(ch);

println(newStr); // HELLO
113
O

Starts With

Google

how U : :
Given two strings,

how to do integer division javascript Remove how can we check if

how to text on mac computer with android phone Remove one starts with the

how many ounces in a pound

how many ounces in a cup otherg

how many ounces in a gallon /

how to screenshot on mac

how to tie a tie

how old is spongebob
how to train your dragon
howard stern

Google Search I'm Feeling Lucky

Report inappropriate predictions

114

Starts With

/*
* startsWith
X

* This method returns whether the String sl starts with

* the String s2. Can assume sl is as long as or longer than s2.

*/
private boolean startsWith(String s1, String s2) {
for (int i = 0; i < s2.length(); i++) {
if (sl.charAt(i) != s2.charAt(i)) {
return false;

}

return true;

115

Plan for Today

e Review: Memory
e Characters
e Sirings

Reminder: Check out Midterm Info page on website

— Download Bluebook
— Set up Two-Factor with Passcodes

Next time: Problem Solving with Strings!

116

