Arrays

Lecture 16

CS106A, Summer 2019
Sarai Gould && Laura Cruz-Albrecht

With inspiration from slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, Chris Piech and others.

Announcements

GREAT JOB ON THE MIDTERM!

,

Announcements

e Midterms solutions will be released later this week.

Plan for Today

Review: Characters and Strings

Data Structures

AIrays

Storing Coffee Prices in an Array

Pass by Reference and Pass by Value
Cat Wake Ups

ArrayLlists (quickly)

Review: Looping over Strings

A common String programming pattern is looping over a
String and operating on each character.

for (int 1 = 0; i < str.length(); i++) {
char ch = str.charAt(i);
// do something with ch here

Review: Looping over Strings

Another common String programming pattern is building up a

new string by adding characters to it over time.

// Creates a

String str = ""

for (int 1 =
str += 1i;

}
println(str);

new String containing digits © through 4
5

O; 1 < 5; i++) {

// 01234

How Can We Store MORE Information@

How Can We Store MORE Information@

Most variables we've learned about so far can only store very

imited data:

int = 5;

double = 0.2;
boolean = true;
char = ‘c’;

String = “Hi!”;

How Can We Store MORE Information@

What if | want
morec!c*

*it's a litfle mermaid reference @ 9

Data Structures

Data Structures allow us to store more data in more
interesting ways.

An array is one of these data structures!

Arrays allow us to store data in a fixed size list.

With arrays, we can store lots of one type of datal We can
have an array of ints, booleans, GRects, you name it!

Creating Our First Arrays

We can create arrays a few different ways.

Creating Our First Arrays

We can set the values we want in our arrays.

// A few examples
String[] bestFriends = {“Duke”, “Karel”}; // [“Duke”, “Karel”]

int[] favNumbers = {4, 7, 23}; // [4, 7, 23]

double[] specialNums = {1.41, 1.61, 2.83, 3.14}; // [1.41, 1.61, 2.83, 3.14]

Creating Our First Arrays

type[] name = {elements, to, add, to, array};

// A few examples
String[] bestFriends = {“Duke”, “Karel”}; // [“Duke”, “Karel”]

int[] favNumbers = {4, 7, 23}; // [4, 7, 23]

double[] specialNums = {1.41, 1.61, 2.83, 3.14}; // [1.41, 1.61, 2.83, 3.14]

Creating Our First Arrays

We can set the length of the array and let it have default
values.

// A few examples
String[] fourStrings = new String[4]; // [null, null, null, null]

int[] sixInts = new int[6]; // [0, ©, @0, O, 0, O]

double[] threeDoubles = new int[3]; // [0.0, 0.0, 0.0]

Creating Our First Arrays

type[] name = new type[numberOfElements];

// A few examples
String[] fourStrings = new String[4]; // [null, null, null, null]

int[] sixInts = new int[6]; // [0, ©, @0, O, 0, O]

double[] threeDoubles = new int[3]; // [0.0, 0.0, 0.0]

Arrays Remind Me of Strings

There are some similarities that arrays have to Strings!

e Each characteris assigned an index, going from 0 to length-1.
e Thereis a char at each index.

Hie|l|l|lo]|!

%) 1 2 3 4 5

int strLen = text.length(); // 6
char last = text.charAt(strLen - 1); // !’

e Each location is assigned an index, going from 0O to length-1.
e The type of data at each index depends on the type of array!

213|4|5|6]|7

%) 1 2 3 4 5

int arrayLen = myArray.length; // 6
int last = myArray[arraylLen - 1]; /] 7

Arrays vs. Strings

AlrQy: String:

int[] myArray = new int[5]; String text = “Hello!”;
OR

int[] myArray

{2, 3, 4, 5, 6, 7};

int arraylLen = myArray.length; int strlen = text.length();

int first = myArray[0]; char first = text.charAt(0);

int last = myArray[arrayLen - 1]; char last = text.charAt(strLen - 1);

// In arrays, we can change elements! // In Strings, we can’t change elements!
myArray[0] = 1; /] (

20

Geftting Array Elements

We can get values from our arrays! | - buke™ | “Karel”
(%) 1

// A few examples
String[] bestFriends = {“Duke”, “Karel”}; // [“Duke”, “Karel”]

21

Geftting Array Elements

This is very similar fo how we get
Y | ©9d “Duke” |“Karel”

elements from Strings. The indices

also start at 0! 0 1

// A few examples
String[] bestFriends = {“Duke”, “Karel”}; // [“Duke”, “Karel”]

String firstFriend = bestFriends[0@];
println(firstFriend); // “Duke”

22

Geftting Array Elements

(L4) (L%)
We can get values from our arrays! Duke Karel
(%) 1
// A few examples
String[] bestFriends = {“Duke”, “Karel”}; // [“Duke”, “Karel”]
String firstFriend = bestFriends[0];
println(firstFriend); // “Duke”
String secondFriend = bestFriends[1];
println(secondFriend); // “Karel”
23

Geftting Array Elements

This is one way to get the last “Duke™ | “Karel™
element in an array. 0 1

// A few examples
String[] bestFriends = {“Duke”, “Karel”}; // [“Duke”, “Karel”]

String firstFriend = bestFriends[0@];
println(firstFriend); // “Duke”

String lastFriend = bestFriends[bestFriends.length - 1];
println(lastFriend); // “Karel”

24

Setting Array Elements

Maybe | want to change the elements in my array!

// A few examples
int[] evenNumbers = new int[3] ; // [0, ©, O]

25

Setting Array Elements

Unlike Strings, in arrays you can set what different indexes
are equal tol

// A few examples
int[] evenNumbers = new int[3] ; // [0, ©, O]

// Let’s change the first element (index ©) to 2! 2 @ @

evenNumbers[@0] = 2; // [2, 0, O]

26

Setting Array Elements

Unlike Strings, in arrays you can set what different indexes
are equal tol

// A few examples
int[] evenNumbers = new int[3] ; // [0, ©, O]

// Let’s change the first element (index ©) to 2! 2 4 @

evenNumbers[@0] = 2; // [2, 0, O]

// Let’s change the second element (index 1) to 4! 0 1 2
evenNumbers[1l] = 4; // [2, 4, O]

27

Setting Array Elements

Unlike Strings, in arrays you can set what different indexes
are equal tol

// A few examples
int[] evenNumbers = new int[3] ; // [0, ©, O]

// Let’s change the first element (index ©) to 2! 2 4 6

evenNumbers[@0] = 2; // [2, 0, O]

// Let’s change the second element (index 1) to 4! 0 1 2
evenNumbers[1l] = 4; // [2, 4, O]

// Let’s change the third element (index 2) to 6!
evenNumbers[2] = 6; // [2, 4, 6] o8

Setting Array Elements

This is one way to set the last index of an array!

// A few examples
int[] evenNumbers = new int[3] ; // [0, ©, O]

// Let’s change the first element (index ©) to 2!
evenNumbers[@0] = 2; // [2, 0, O]

// Let’s change the second element (index 1) to 4!
evenNumbers[1l] = 4; // [2, 4, O]

// Let’s change the last element (index 2) to 6!
evenNumbers[evenNumbers.length - 1] = 6; // [2, 4, 6]

29

Setting Array Elements

name[index] = newValueAtIndex;

// A few examples
int[] evenNumbers = new int[3] ; // [0, ©, O]

// Let’s change the first element (index ©) to 2!
evenNumbers[@0] = 2; // [2, 0, O]

// Let’s change the second element (index 1) to 4!
evenNumbers[1l] = 4; // [2, 4, O]

// Let’s change the last element (index 2) to 6!
evenNumbers[evenNumbers.length - 1] = 6; // [2, 4, 6]

30

Why Do We Care About Arrayse

Why Do We Care About Arrayse

Storing Lots of Values

What if | wanted to find out the maximum amount | spent on
coffee this week?

33

Storing Lots of Values

Let’s use an array to store information about coffee
spending!

34

Max Coffee Spending

What type of data are we
storing?

35

Max Coffee Spending

What type of data are we
storing?

Double!

Money is usually stored as a
double.

36

Max Coffee Spending

What's the Pseudocode?

37

Max Coffee Spending

What's the Pseudocode?

Repeat for 7 days of the week
Ask how much money was spent
Store money spent in array
Repeat for length of array
Compare current value to previous maximum spent
if current value is greater then previous maximum

Store current value as new max value

38

Let’'s Code It

Max Coffee Spending

What's the Pseudocode?

Repeat for 7 days of the week
Ask how much money was spent
Store money spent in array
Use Array method to sort the array smallest -> biggest

The last element is the most money spent!

40

Using an array helped us store data and allowed us to use
some helpful methods to make our lives easier.

41

Arrays as Parameters

What if we want to pass arrays and elements in arrays into @
methode What happens then?

42

Arrays as Parameters

public void run(){

int[] oddNumbers = new int[3]; // [0, 0, O]
makeArrayOdd(oddNumbers);

}

private void makeArrayOdd(int[] arrayToChange){
arrayToChange[0] = 1;
arrayToChange[1l] = 3;
arrayToChange[2] = 5;

}

What happens to this arraye

43

Arrays as Parameters

public void run(){
int[] oddNumbers = new int[3]; // [0, 0, O]
makeArrayOdd(oddNumbers);

}

run

Oj]0}| O

oddNumbers 44

Arrays as Parameters

public void run(){
int[] oddNumbers = new int[3]; // [0, 0, O]
makeArrayOdd(oddNumbers);

}

run

Oj]0}| O

oddNumbers 45

Arrays as Parameters

public void run(){

private void makeArrayOdd(int[] arrayToChange){
} arrayToChange[0] = 1;
arrayToChange[1l] = 3; -
arrayToChange[2] = 5;
}
run makeArrayOdd
0Oj]0| O 0Oj]0| O
oddNumbers arrayToChange 46

Arrays as Parameters

public void run(){

private void makeArrayOdd(int[] arrayToChange){

arrayToChange[0]

arrayToChange[1]
arrayToChange[2]

run

makeArrayOdd

1

0

0

oddNumbers

1

0

0

arrayToChange

Wait, they both changed!
We've seen this before...

47

Passing an Object by Reference

ublic void run(){

private void changeRect(GRect objectRect){

objectRect.setFilled(false);
objectRect.setColor(Color.GREEN);

}
GUU\UUJCLLI\CLL, J.UU_, J.UU},
changeRect(objectRect);
}
" NOK) VoidExample run changeRect

primitivelnt: 0

objectRect objectRect

40

Arrays as Parameters

public void run(){

49

private void makeArrayOdd(int[] arrayToChange){
} arrayToChange[0] = 1;
arrayToChange[1l] = 3;
arrayToChange[2] = 5;
}
run nakeArray0dd It looks like arrays are also
passed by reference. Arrays
10/ 0 10/ 0 are also objects!
oddNumbers arrayToChange

Arrays as Parameters

public void run(){

private void makeArrayOdd(int[] arrayToChange){
} arrayToChange[0] = 1;
arrayToChange[1l] = 3;]
arrayToChange[2] = 5;
}
run makeArrayOdd heap:
location 34 location 34 110 0
oddNumbers arrayToChange T— location 34 50

Arrays as Parameters

public void run(){

private void makeArrayOdd(int[] arrayToChange){
} arrayToChange[0] = 1;
arrayToChange[1l] = 3;]
arrayToChange[2] = 5;
}
run makeArrayOdd heap:
location 34 location 34 11| 3 0
oddNumbers arrayToChange T— location 34 51

Arrays as Parameters

public void run(){

private void makeArrayOdd(int[] arrayToChange){
} arrayToChange[0] = 1;
arrayToChange[1l] = 3;]
arrayToChange[2] = 5;
}
run makeArrayOdd heap:
location 34 location 34 1| 3| 5
oddNumbers arrayToChange T— location 34 52

Arrays as Parameters

public void run(){

private void makeArrayOdd(int[] arrayToChange){
} arrayToChange[0] = 1;
arrayToChange[1l] = 3;]
arrayToChange[2] = 5;
run makeArrayOdd heap:
location 34 location 34 1| 3| 5
oddNumbers arrayToChange T— location 34 53

Arrays as Parameters

public void run(){
int[] oddNumbers = new int[3]; // [0, 0, O]
makeArrayOdd(oddNumbers);| // [1, 3, 5]

run heap:

location 34 1 3 5

—_

oddNumbers 5\\\\\\‘§§\\\\““‘\\ﬂ-location 34 54

Arrays are Passed by Reference

Because arrays are passed by reference this means they
CAN be changed by passing them intfo a method.

55

Arrays as Parameters

public void run(){
int[] oddNumbers = new int[3]; // [0, 0, O]
makeArrayOdd(oddNumbers);

}

private void makeArrayOdd(int[] arrayToChange){
arrayToChange[0] = 1;
arrayToChange[1l] = 3;
arrayToChange[2] = 5;

56

A Closer Look at Parameters

int[] oddNug®ers = new int[3]; // [0, 0, O]
makeArrayOgd(location 34);
}

kgr‘r‘ayOdd(arr‘ayToChange = location 34){

What happens to this Crrrenys

Because arrays are passed by reference this means they
CAN be changed by passing them intfo a method.

What about array elementse

58

Array Values as Parameters

public void run(){
int[] oddNumbers = new int[3]; // [0, 0, O]
makeArrayOdd(oddNumbers[@], oddNumbers[1], oddNumbers[2]);

}

private void makeArrayOdd(int a, int b, int c){
a =1;
b = 3;
c = 5;

}

What happens to the array nowe

59

Array Values as Parameters

public void run(){
int[] oddNumbers = new int[3]; // [0, 0, O]
makeArrayOdd(oddNumbers[@], oddNumbers[1], oddNumbers[2]);

}

private void makeArrayOdd(int a, int b, int c){
a =1;
b = 3;
c = 5;

}

This does not change our array! By passing in primitive values from the
array, we simply created copies of the numbers in the array!

If our parameters are primitives, nothing is changing outside the method!

60
O

A Closer Look

int[] oddumbers = new int[3]; // [0, 0, ¥
makeArra ird(e, 9, 9);

akeArrayOdd(a = @, b = 0, c = 0){

This does not change our array! By passing in pri

as from the
array, we simply created copies of the numbers in the %

If our parameters are primitives, nothing is changing outside th&aethod!

61

Swapping Elements

How can we swap elements in an array?¢

Think: if we have two boxes, how can we swap what's in the
boxese

62

Swapping Elements

How can we swap elements in an array?¢

Think: if we have two boxes, how can we swap what's in the
boxese

Answer: We need a temporary box to store one of the
elements while we're doing the swap!

63

Swapping Elements: Example |

public void run(){

int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray[1l], sortedArray[2]);
}

private void swapElements(int vall, int val2){
int temp = vall,;
vall = val2;
val2 = temp;

}

What happens to this arraye

64

Swapping Elements: Example 2

}

}

public void run(){
int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]

swapElements(sortedArray, 1, 2);

private void swapElements(int[] arr, int posl, int pos2){

int temp = arr[posil];

arr[posl]
arr[pos2]

arr[pos2];
temp;

What happens to this arraye

65

Reference vs. Value

In Example 1, we made copies of the primitive elements in
the array and they were passed by value.

In Example 2, we passed in the array itself, and it was passed
by reference.

When we pass in the array as a parameter, we can change it
within a method!

66

Swapping Elements: Example |

public void run(){

int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray[1l], sortedArray[2]);
}

private void swapElements(int vall, int val2){
int temp = vall,;
vall = val2;
val2 = temp;

}

What happens to this arraye

67

Swapping Elements: Example |

int[] sortdArray = {1, 3, 2, 4}; // [IN3, 2, 4]
swapElemghts(3, 2);
}

SALpElements(vall = 3, val2 = 2){

What happens to this array?

68

Swapping Elements: Example 2

}

}

public void run(){
int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]

swapElements(sortedArray, 1, 2);

private void swapElements(int[] arr, int posl, int pos2){

int temp = arr[posil];

arr[posl]
arr[pos2]

arr[pos2];
temp;

What happens to this arraye

69

Swapping Elements: Example 2

run(){
int[] sorteg#frray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElementg(location 5, 1, 2);

: a#ements(arr‘ = location 5, posl = 1, pos2 = 2)

IS arraye

What happens 8

Reference vs. Value

In Example 1, we made copies of the primitive elements in
the array and they were passed by value.

In Example 2, we passed in the array itself, and it was passed
by reference.

When we pass in the array as a parameter, we can change it
within a method!

71

Another Example

Let’s say | want to store information about my 5 cats (that |
wish | could have).

We'll store some data about them in an array and then
retrieve that data from our array!

72

A Small Lie...

Here is my cat (she lives with
my mother).

Her name is Chi.

Another Example

| love my cat, but she has been constantly waking me up at
night!

It makes me pretty tired, so my doctor wants to know how
many wake ups I've been receiving! Can we write a program
to record and relay the number of times I've been woken up
by my (beautiful) cat*e

*Who | love more than | love most things 74
e

Let’'s Code It

Quick Sidenote:

ArraylLists will be covered in Thursday's lecture, but you will
need them for ParaKarel, so we're doing a quick intro now!

ArraylLists are a bif like fancy arrays (more on Thursday).

76

Arrays vs. ArrayLists

Alray:

int[] myArray
OR
int[] myArray

new int[5];

{2, 3, 4, 5, 6, 7};

int arraylLen = myArray.length;
int first = myArray[0];
int last = myArray[arraylLen - 1];

myArray[last] = 1;

ArraylList:

ArraylList<Integer> = new ArraylList<>();

int arraylListlLen = .size();
int first = .get(0);
int last = .get(arraylListlLen - 1);

myAL.add(1);

77

Arrays vs. ArrayLists

Arraylist:

// How to create an ArraylList that stores Strings
ArraylList<String> = new ArraylList<>();

// Getting the size of the Arraylist
int arraylListlLen = .size();

// Getting the first and last element in an ArraylList of Strings
String first = .get(9);
String last = .get(arraylListlLen - 1);

// Adding an element to the Arraylist
myAL.add(“defenestrate”);

78

Plan for Today

Review: Characters and Strings

Data Structures

AIrays

Storing Coffee Prices in an Array

Pass by Reference and Pass by Value
Cat Wake Ups

ArrayLlists (quickly)

79

