2D Arrays

Lecture 17

CST106A, Summer 2019
Sarai Gould && Laura Cruz-Albrecht

With inspiration from slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, Chris Piech and others.

Announcements

e We're at the halfway point! Please fill out the Mid-Quarter

Evaluation at cs198.stanford.edu.

o Completely anonymous, you will receive a small amount of
assignment extra credit if you complete it

o Note: You have 30 minutes from opening the survey to complete it

CS198 - Teaching Computer Science

‘ CS106 student? Fill out your mid-quarter evaluation here. ~ CS106 Sections
Login

About the
The CS198 Program CS198 Program

The CS198 program is a group of about 90 undergraduate and graduate
students responsible for teaching section for Stanford's introductory CS) A pp]y 1‘0
courses: CS106A# , CS106B# , CS106X# , and CS106L# . The program is e Section Lead

aimed at eivine analified undereraduate students of all maiors a uniaue

http://cs198.stanford.edu

Plan for Today

Review: Arrays

2D Arrays

Images as 2D Arrays
Manipulating Images
Practice: Grayscale

Plan for Today

Review: Arrays

2D Arrays

Images as 2D Arrays
Manipulating Images
Practice: Grayscale

e Each location is assigned an index, going from 0 to length-1.
e The type of data at each index depends on the type of array!

213|4|5|6]|7

%) 1 2 3 4 5

int arrayLen = myArray.length; // 6
int last = myArray[arraylLen - 1]; /] 7

int[] myArray = new int[5];
// OR
int[] myArray

{2, 3, 4, 5, 6, 7};

int arraylLen = myArray.length;

// Access elements with bracket notation
int first = myArray[0];

int last = myArray[arraylLen - 1];

// In arrays, we can change elements!
myArray[@0] = 22;

Review: Swapping Elements

public void run(){
int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

} NN These are indices

private void swapElements(int[] arr, int posl, int pos2){
int temp = arr[posl];
arr[posl] arr[pos2];
arr[pos2] = temp;

}

What happens to this array?

Review: Swanning Elements

run(){
int[] sortedAgfay = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElementgKlocation 5, 1, 2);

g a#ements(arr = location 5, posl = 1, pos2 = 2)

What happens t&this array?

Review: Swapping Elements

public void run(){
int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int posl, int pos2){
int temp = arr[posl];
arr[posl] arr[pos2];
arr[pos2] temp;

Review: Swapping Elements

public void run(){

int[] sortedArray = {1, 3, 2, 4};

swaptlements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int posl, int pos2){

int temp = arr[posl];
arr[posl] = arr[pos2];
arr[pos2] = temp;

/111, 3, 2, 4]

}
2
5 >
sortedArray 1]3 214
0 1 2 3
run

Review: Swapping Elements

public void run(){
int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);
} NN

These are indices
private void swapElements(int[] arr, int posl, int pos2){
int temp = arr[posl];
arr[posl] = arr[pos2];
arr[pos2] = temp;

}
2
5 >
sortedArray 1]3 214
0 1 2 3
run

Review: Swapping Elements

public void run(){

}

int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

NN These are indices

private void swapElements(int[] arr, int posl, int pos2){

int temp = arr[posl];
arr[posl] = arr[pos2];
arr[pos2] = temp;

}
)
2 S5 -
sortedArray arr 1132
(%] 1 2
run swapElements posl pos2

Review: Swapping Elements

public void run(){
int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int posl, int pos2){
int temp = arr[posl];
arr[posl] = arr[pos2];
arr[pos2] = temp;

}
)
5 5 |
sortedArray arr 1(3(2|4
(%] 1 2 3
run swapElements posl pos2

Review: Swapping Elements

public void run(){
int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int posl, int pos2){
int temp = arr[posl];
arr[posl] = arr[pos2];
arr[pos2] = temp;

}
5
5 5 |
sortedArray arr 113124
3 0 1 2 3
temp I I
run swapElements posl pos2

Review: Swapping Elements

public void run(){
int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int posl, int pos2){
int temp = arr[posl];
arr[posl] = arr[pos2];
arr[pos2] = temp;

}
3
5 5 | [
sortedArray arr 113]12]4
3 (% 1 2 3
temp I I
run swapElements posl pos2 15

Review: Swapping Elements

public void run(){
int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int posl, int pos2){
int temp = arr[posl];
arr[posl] = arr[pos2];
arr[pos2] = temp;

}
3
5 5 | [
sortedArray arr 113124
3 (% 1 2 3
temp I I
run swapElements posl pos2 16

Review: Swapping Elements

public void run(){
int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int posl, int pos2){
int temp = arr[posl];
arr[posl] = arr[pos2];
arr[pos2] = temp;

}
3
5 5 | [
sortedArray arr 112124
3 (% 1 2 3
temp I I
run swapElements posl pos2 17

Review: Swapping Elements

public void run(){
int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int posl, int pos2){
int temp = arr[posl];
arr[posl] = arr[pos2];
arr[pos2] = temp;

}
5
5 5 |
sortedArray arr 1(2(2(4
3 0 1 2 3
temp I I
run swapElements posl pos2

Review: Swapping Elements

public void run(){
int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int posl, int pos2){
int temp = arr[posl];
arr[posl] = arr[pos2];
arr[pos2] = temp;

}
5
5 5 |
sortedArray arr 112124
3 0 1 2 3
temp I I
run swapElements posl pos2

Review: Swapping Elements

public void run(){
int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int posl, int pos2){
int temp = arr[posl];
arr[posl] = arr[pos2];
arr[pos2] = temp;

}
5
5 5 |
sortedArray arr 11234
3 0 1 2 3
temp I I
run swapElements posl pos2

20

Review: Swapping Elements

public void run(){

}

int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

private void swapElements(int[] arr, int posl, int pos2){
int temp = arr[posl];
arr[posl] = arr[pos2];
arr[pos2] = temp;

!]
2 2
sortedArray arr
3
temp
run swapElements

5
1(2](3
0 1 2
11
posl pos2

21

Review: Swapping Elements

public void run(){

int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

private void swapElements(int[] arr, int posl, int pos2){

int temp = arr[posl];

arr[posl] = arr[pos2];

arr[pos2] = temp;

}
5
2
sortedArray 1
0
run

22

Plan for Today

Review: Arrays

2D Arrays

Images as 2D Arrays
Manipulating Images
Practice: Grayscale

23

boolean[] b = new boolean[3];

24

[]
\

| want an array

25

boolean

T | want an array

that stores booleans

26

boolean[] b = new boolean[3];

© | false
1 | false
2 | false

27

int[] a = new int[3];

28

[]
\

| want an array

29

int

f | want an array

that stores ints

30

int[] a = new int[3];

9| O
1| @
2| O

31

A Thought

What if | want
morec!c*

* possibly a little mermaid reference @ 39
s

A Thought

| want an array
that stores arrays

* possibly a little mermaid reference @ 33
s

An Array... of Arrays

int[][] matrix = new int[3][4];

34

An Array... of Arrays

[]
\

| want an array

An Array... of Arrays

int[]
/‘ \
| want an array

that stores int[]s

36

An Array... of Arrays

int[]
/‘ \
| want an array

that stores int[]s
aka, that stores arrays!

37

An Array... of Arrays

int[][] matrix = new int[3][4];

@//eeee
e 1 2 3
1| ——1 00|10 |6
e 1 2 3
’l —T—/o|0|0]|0
e 1 2 3

38

A 2D Array

int[][] matrix = new int[3][4];

-
(OO
(OO
(OO
(OO

39

A 2D Array

Number of rows

int[][] matrix = new int[3][4];

|1 00|00
311190010 |0
2101010 |0

40

A 2D Array

Number of rows

int[][] matrix = new int[é][4];

A A
—— Number of columns
(%] 1 2 3
1010|100
1100|0606
21010900 |06

41

Reasoning about 2D Arrays

There are two main ways to reason about a 2D array:

1. As an array of arrays

e A 2D array is an array whose elements are
themselves arrays

2. As a unit
e A 2D array represents a grid / matrix

42

Manipulating 2D Arrays

type[][] name = new type[numRows][numCols];
name[row][col]; // get element at row, col

name[row][col] = value; // set element at row, col

43

Row, then Col

matrix| row 11 col]

Row, then Col

R is for StanfoRd Cis for Cdl

/

45

Manipulating 2D Arrays

int[][] matrix = new int[3][4];

-
QIO
| O | P
| O
IO

46

Manipulating 2D Arrays

int[][] matrix = new int[3][4];

int val = matrix[@][1]; e 1 2 3

-
QIO
| O | P
| O
IO

47

Manipulating 2D Arrays

int[][] matrix = new int[3][4];

int val = matrix[@][1]; // 4 6 1 2 3
o | Q|| 41|00
110000
21010100

48

Manipulating 2D Arrays

int[][] matrix = new int[3][4];

int val = matrix[@][1]; // 4 e 1 2 3
1014|100
matrix[1][3] = 8;
110000
21010100

49

Manipulating 2D Arrays

int[][] matrix = new int[3][4];

int val = matrix[@][1]; // 4 e 1 2 3
1014|100
matrix[1][3] = 8;
110000
21010100

50

Manipulating 2D Arrays

int[][] matrix = new int[3][4];

int val = matrix[@][1]; // 4 e 1 2 3
1014|100
matrix[1][3] = 8;
11010)|09| 8
21010100

51

Manipulating 2D Arrays

int[][] matrix = new int[3][4];

int val = matrix[@][1]; // 4 e 1 2 3
104|100
matrix[1][3] = 8;
110100 |8
int[] firstRow = matrix[0]; c|lololole

52

Manipulating 2D Arrays

int[][] matrix = new int[3][4];

int val = matrix[@][1]; // 4 8 1 2 3
104|100
matrix[1][3] = 8;
110100 |8
int[] firstRow = matrix[0]; c|lololole

53

Manipulating 2D Arrays

int[][] matrix = new int[3][4];

int val = matrix[@][1]; // 4 e 1 2 3
104|100
matrix[1][3] = 8;
110100 |8
int[] firstRow = matrix[0]; c|lololole

// note: no way to get single col y
O

2D Array Dimensions

e How can we get the number of rows using .length? How
about the number of columns?

10|00 |0
110|000
210010 |0

55

2D Array Dimensions

e How can we get the number of rows using .length? How
about the number of columns?

—1 - @e|0|0]|0
6 e 1 2 3
1] —+—~o0|o|o]o

e 1 2 3
2l —T—o|0o|o|0
e 1 2 3

56

2D Array Dimensions

e How can we get the number of rows using .length? How
about the number of columns?

//' 00|10 |0 int numRows = ?°?
0 0 1 2 3
1| ——10 |00 |06
(%) 1 2 3
2l —T—|o|o|0|0
0 1 2 3

57

2D Array Dimensions

e How can we get the number of rows using .length? How
about the number of columns?

//' 00|10 |0 int numRows = ?°?
0 0 1 2 3
11 ——10|0|0|06
(%) 1 2 3
2l ~T—o|o|0|0
0 1 2 3

58

2D Array Dimensions

e How can we get the number of rows using .length? How
about the number of columns?

0 P Rd 01000 int numRows = arr.length;
e 1 2 3
1| ——10|0(0|0
e 1 2 3
‘LT o|o|0]|o
e 1 2 3

59

2D Array Dimensions

e How can we get the number of rows using .length? How
about the number of columns?

~1-+90]10(0]0 int numRows = arr.length;
0 6 1 2 3
1| —T—19]|0(0|0
e 1 2 3 int numCols = ??
2| —T—e|e|e]|e
6 1 2 3

60

2D Array Dimensions

e How can we get the number of rows using .length? How
about the number of columns?

~1-+90]10[0]0 int numRows = arr.length;
0 © 1 2 3
1| —T—19]|0(0|0
e 1 2 3 int numCols = ??
2| —T—e|e|e]|e
6 1 2 3

61

2D Array Dimensions

e How can we get the number of rows using .length? How
about the number of columns?

S 01000 int numRows = arr.length;
9 e 1 2 3
1 1+~ 9101010 // # entries in row © = # cols
o 1 2 3 int numCols = arr[@].length;
|l T o|o|o|o
e 1 2 3

62

Get Number of Rows

private int numRows(int[][] matrix) {
return matrix.length;

¥

(OO
(OO

w
-
(OO
(OO

63

Get Number of Columns

private int numCols(int[][] matrix) {
return matrix[@].length;

! 4
—
R
ole|e|0|o
1|e|0|0|0
|e|0|0|o

64

2D Arrays < For Loops

e The canonical way to loop over a 2D array is with a
double for loop

type[][] arr = ...
for (int row = @; row < arr.length; row++) {

for (int col = @; col < arr[@].length; col++) {
// do something with arr[row][col] ...

¥

65

2D Arrays < For Loops

e The canonical way to loop over a 2D array is with a
double for loop

type[][] arr = ...
for (int row = @; row < numRows(arr); row++) {

for (int col = @; col < numCols(arr); col++) {
// do something with arr[row][col] ...

¥

66

2D Arrays < For Loops

int[][] arr = new int[3][4];
for (int row = @; row < numRows(arr); row++) {
for (int col = @; col < numCols(arr); col++) {

arr[row][col] = row + col;

}
} 0 1 2 3
00|00
1100|006
2100|006 3

2D Arrays < For Loops

int[][] arr = new int[3][4];
for (int row = @; row < numRows(arr); row++) {
for (int col = @; col < numCols(arr); col++) {

arr[row][col] = row + col;

)
} o 1 2 3

ole|e|e|o

1|o|0|0|0

|0|0|0|0)

2D Arrays < For Loops

int[][] arr = new int[3][4];
for (int row = @; row < numRows(arr); row++) {
for (int col = @; col < numCols(arr); col++) {

arr[row][col] = row + col;

)
} o 1 2 3

ole|e|e|o

1|o|0|0|0

|0|0|0|0)

2D Arrays < For Loops

int[][] arr = new int[3][4];
for (int row = @; row < numRows(arr); row++) {
for (int col = @; col < numCols(arr); col++) {

arr[row][col] = row + col;

)
} o 1 2 3

ole|1|e|e

1|o|0|0|0

|0|0|0|0)

2D Arrays < For Loops

int[][] arr = new int[3][4];
for (int row = @; row < numRows(arr); row++) {
for (int col = @; col < numCols(arr); col++) {

arr[row][col] = row + col;

)
} o 1 2 3

ole|1]0]o

1|o|0|0|0

|0|0|0|0)

2D Arrays < For Loops

int[][] arr = new int[3][4];
for (int row = @; row < numRows(arr); row++) {
for (int col = @; col < numCols(arr); col++) {

arr[row][col] = row + col;

)
} o 1 2 3

olo|1]2]e

1|o|0|0|0

|0|0|0|0)

2D Arrays < For Loops

int[][] arr = new int[3][4];
for (int row = @; row < numRows(arr); row++) {
for (int col = @; col < numCols(arr); col++) {

arr[row][col] = row + col;

)
} o 1 2 3

olo|1]2]6

1|o|0|0|0

|0|0|0|0)

2D Arrays < For Loops

int[][] arr = new int[3][4];
for (int row = @; row < numRows(arr); row++) {
for (int col = @; col < numCols(arr); col++) {

arr[row][col] = row + col;

)
} o 1 2 3

olo|1]2]3

1|o|0|0|0

|0|0|0|0)

2D Arrays < For Loops

int[][] arr = new int[3][4];
for (int row = @; row < numRows(arr); row++) {
for (int col = @; col < numCols(arr); col++) {

arr[row][col] = row + col;

)
} o 1 2 3

olo|1]2]3

1|0|0|0|0

|0|0|0|0)

2D Arrays < For Loops

int[][] arr = new int[3][4];
for (int row = @; row < numRows(arr); row++) {
for (int col = @; col < numCols(arr); col++) {

arr[row][col] = row + col;

)
} o 1 2 3

olo|1]2]3

1|1|e|0]|0

|0|0|0|0)

2D Arrays < For Loops

int[][] arr = new int[3][4];
for (int row = @; row < numRows(arr); row++) {
for (int col = @; col < numCols(arr); col++) {

arr[row][col] = row + col;

)
} o 1 2 3

olo|1]2]3

1|1]e|e|e

|0|0|0|0)

2D Arrays < For Loops

int[][] arr = new int[3][4];
for (int row = @; row < numRows(arr); row++) {
for (int col = @; col < numCols(arr); col++) {

arr[row][col] = row + col;

)
} o 1 2 3

olo|1]2]3

112|060

|0|0|0|0)

2D Arrays < For Loops

int[][] arr = new int[3][4];
for (int row = @; row < numRows(arr); row++) {
for (int col = @; col < numCols(arr); col++) {

arr[row][col] = row + col;

)
} o 1 2 3

olo|1]2]3

1|1]2]@]0

|0|0|0|0)

2D Arrays < For Loops

int[][] arr = new int[3][4];
for (int row = @; row < numRows(arr); row++) {
for (int col = @; col < numCols(arr); col++) {
arr[row][col] = row + col;

)
} o 1 2 3
ol@|1]2]3
111]2]3]|4

21 2(3]4]5)

2D Arrays on 1 Slide

1. Make a 2D array
double[][] grid = new double[nRows][nCols];

81

2D Arrays on 1 Slide

1. Make a 2D array
double[][] grid = new double[nRows][nCols];

2. Setf and get values from a 2D array using bracket notation
grid[2][1] = 2.2;
println(“Upper left val is: ” + grid[@][0]);

82

2D Arrays on 1 Slide

double[][] grid = new double[nRows][nCols];

Make a 2D array

Set and get values from a 2D array using bracket notation
grid[2][1] = 2.2;
println(“Upper left val is: ” + grid[@][0]);

Get the number of rows and columns of a 2D array (tip: define method)
int numRows = grid.length;
int numCols = grid[@].length;

83

2D Arrays on 1 Slide

double[][] grid = new double[nRows][nCols];

Make a 2D array

Set and get values from a 2D array using bracket notation
grid[2][1] = 2.2;
println(“Upper left val is: ” + grid[@][0]);

Get the number of rows and columns of a 2D array (tip: define method)
int numRows = grid.length;
int numCols = grid[@].length;

Use a double for loop to iterate over the entire 2D array
for (int r = @; r < grid.length; r++) {
for (int ¢ = @; c < grid[@].length; c++) {
// something with grid[r][c]

84

Plan for Today

Review: Arrays

2D Arrays

Images as 2D Arrays
Manipulating Images
Practice: Grayscale

85

Images are
2D arrays!

R

" A Y &Y & F

Images

e |Images are 2D arrays of pixels
e Pixels are simply integers with red, green, and blue
components (each between 0 and 255)

87

Images as 2D Arrays

We can get a Gimage as a 2D array of pixels.

GImage img = new GImage(“res/passionflower.jpg”);
int[]J[] pixels = img.getPixelArray();
int topLeftPixel = pixels[0][0];

88

Time for Art

Isn't This Artee?¢

@® NestedForLoopDots

Noft really the

same, but okay...
/

Let's do Pointillism!

Let's make this
/

A Sunday on La Grande Jatte, Georges Seurat

Example: Pointillism

(K) Pointillism

Example: Pointillism

[JOX J Pointillism
s b 4

23

Example: Pointillism

Repeat many times:

1. Pick a random pixel from an image.

2. Find the pixel’s color

3. “Paint” a rather large brush stroke at a
corresponding location, with the color

94

Example: Pointillism

Example: Pointillism

C = 220

r = 340

26

Example: Pointillism

C = 220

r = 340 ‘

97

Example: Pointillism

Let’'s Code 1!

Plan for Today

Review: Arrays

2D Arrays

Images as 2D Arrays
Manipulating Images
Practice: Grayscale

100

Working with Image Arrays

GImage img = new GImage(“res/passionflower.jpg”);

101

Working with Image Arrays

GImage img = new GImage(“res/passionflower.jpg”);

1. Geta Glmage as a 2D array of pixels
int[][] pixels = img.getPixelArray();

102

Working with Image Arrays

GImage img = new GImage(“res/passionflower.jpg”);

1. Geta Glmage as a 2D array of pixels
int[][] pixels = img.getPixelArray();

2. Modify the pixel array or create a new pixel array
// access individual pixels with: pixels[r][c]

103

Working with Image Arrays

GImage img = new GImage(“res/passionflower.jpg”);

1. Geta Glmage as a 2D array of pixels
int[][] pixels = img.getPixelArray();

2. Modify the pixel array or create a new pixel array
// access individual pixels with: pixels[r][c]

3. Update or create a new Gimage with the modified pixels
img.setPixelArray(pixels); // update image

104

Working with Image Arrays

GImage img = new GImage(“res/passionflower.jpg”);

1. Geta Glmage as a 2D array of pixels
int[][] pixels = img.getPixelArray();

2. Modify the pixel array or create a new pixel array
// access individual pixels with: pixels[r][c]

3. Update or create a new Gimage with the modified pixels
img.setPixelArray(pixels); // update image
// OR

GImage newImg = new GImage(pixels); // make new GImage
105

Working with Image Arrays

2. Modify the pixel array or create a new pixel array
// access individual pixels with: pixels[r][c]

106

Modifying Image Pixels

There are many neat image

algorithms based on modifying o v
individual pixels in an image:

e Qgrayscale

e brighten R

e normalize —

e remove red-eye o

o

(x=203, y=244) (R=132, G=173, B=136)

107

Pixels and RGB

e Pixels encode the R, G, and B values (0-255) of a pixel intfo a

single integer.
e You can convert between this pixel value and the individual

RGB values.

108

Pixels and RGB

You can get individual red, green, and blue values from a pixel.

int[][] pixels = image.getPixelArray();
int pixel = pixels[@][@];

int red = GImage.getRed(pixel); // ©-255

int green = GImage.getGreen(pixel); // ©-255
int blue = GImage.getBlue(pixel); // ©-255

109

Pixels and RGB

You can also create a pixel from individual R, G, B values.

int red = ...

int green = ...

int blue = ...

int pixel = GImage.createRGBPixel(red, green, blue);

110

Modifying Pixels

Extract pixel RGB colors with GiImage.getRed/Blue/Green.
int red = GImage.getRed(pixels[0@][O]); // ©-255
int green = GImage.getGreen(pixels[0@][0]); // ©-255
int blue = GImage.getBlue(pixels[0][0]); // ©-255

111

Modifying Pixels

e Exiract pixel RGB colors with GiImage.getRed/Blue/Green.
int red = GImage.getRed(pixels[0@][O]); // ©-255
int green = GImage.getGreen(pixels[0@][0]); // ©-255
int blue = GImage.getBlue(pixels[0][0]); // ©-255

e Modify the color components for a given pixel.
red = 9; // remove redness

112

Modifying Pixels

e Exiract pixel RGB colors with GiImage.getRed/Blue/Green.
int red = GImage.getRed(pixels[0@][O]); // ©-255
int green = GImage.getGreen(pixels[0@][0]); // ©-255
int blue = GImage.getBlue(pixels[0][0]); // ©-255

e Modify the color components for a given pixel.
red = 9; // remove redness

e Combine the RGB values back together into a single inf.
pixels[@][@] = GImage.createRGBPixel(red, green, blue);

113

Modifying Pixels

Extract pixel RGB colors with GiImage.getRed/Blue/Green.
int red = GImage.getRed(pixels[0@][O]); // ©-255
int green = GImage.getGreen(pixels[0@][0]); // ©-255
int blue = GImage.getBlue(pixels[0][0]); // ©-255

Modify the color components for a given pixel.
red = 9; // remove redness

Combine the RGB values back together into a single int.
pixels[@][@] = GImage.createRGBPixel(red, green, blue);

Update image with your modified pixels when finished.
image.setPixelArray(pixels); 114

Glmage Pixel Methods

Method name

Description

img.getPixelArray()

returns pixels as 2D array of ints, where
each int in the array contains all 3 of Red,
Green, and Blue merged into a single
integer

img.setPixelArray(array);

updates pixels using the given 2D array of
ints

GImage.createRGBPixel(r, g, b)

returns an int that merges the given
amounts of red, green and blue (each 0-
255)

GImage.getRed(px)
GImage.getGreen(px)
GImage.getBlue(px)

returns the redness, greenness, or
blueness of the given pixel as an integer
from 0-255

115

A Note on Image Size

e Destination image is same size — often modify array in place
e Destination image is different size — need a new array

116

A Note on Image Size

e Destination image is same size — often modify array in place
e Destination image is different size — need a new array

Example: Halve the size of an image.

int[][] pixels = img.getPixelArray();
int[][] smaller = new int[numRows(pixels) / 2][numCols(pixels) / 2];

// set to be the pixels of ‘smaller’
img.setPixelArray(smaller);

117

Plan for Today

Review: Arrays

2D Arrays

Images as 2D Arrays
Manipulating Images
Practice: Grayscale

118

Let’'s Code 1!

Plan for Today

Review: Arrays

2D Arrays

Images as 2D Arrays
Manipulating Images
Practice: Grayscale

Extra practice: Brighten
Reminder: MQE Feedback form

Next Time: ArrayLists!

120

[Extra] Brighten

e Practice: write a program that brightens an image each time

you click on if!

e You can brighten a pixel by adding a small value (say, §) to
each of the red, green, and blue values.

e See lecture code for solution.

