
2D Arrays

CS106A, Summer 2019
Sarai Gould && Laura Cruz-Albrecht

Lecture 17

With inspiration from slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, Chris Piech and others.



Announcements
● We’re at the halfway point! Please fill out the Mid-Quarter 

Evaluation at cs198.stanford.edu.
○ Completely anonymous, you will receive a small amount of 

assignment extra credit if you complete it
○ Note: You have 30 minutes from opening the survey to complete it

2

http://cs198.stanford.edu


Plan for Today

● Review: Arrays
● 2D Arrays
● Images as 2D Arrays
● Manipulating Images
● Practice: Grayscale

3



Plan for Today

● Review: Arrays
● 2D Arrays
● Images as 2D Arrays
● Manipulating Images
● Practice: Grayscale

4



5

Review: Arrays

2 3 4 5 6 7
0 1 2 3 4 5

● Each location is assigned an index, going from 0 to length-1.
● The type of data at each index depends on the type of array!

int arrayLen = myArray.length;      // 6
int last = myArray[arrayLen - 1];   // 7



int[] myArray = new int[5];
// OR
int[] myArray = {2, 3, 4, 5, 6, 7};

int arrayLen = myArray.length;  

// Access elements with bracket notation
int first = myArray[0];
int last = myArray[arrayLen - 1];

// In arrays, we can change elements!
myArray[0] = 22;

6

Review: Arrays



Review: Swapping Elements

7

public void run(){

int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int pos1, int pos2){

int temp = arr[pos1];

arr[pos1] = arr[pos2];

arr[pos2] = temp;

}

What happens to this array?

These are indices



Review: Swapping Elements

8

public void run(){

int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(location 5, 1, 2);

}

private void swapElements(arr = location 5, pos1 = 1, pos2 = 2){

int temp = arr[pos1];

arr[pos1] = arr[pos2];

arr[pos2] = temp;

}

What happens to this array?



Review: Swapping Elements

9

public void run(){

int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int pos1, int pos2){

int temp = arr[pos1];

arr[pos1] = arr[pos2];

arr[pos2] = temp;

}



Review: Swapping Elements

10

public void run(){

int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int pos1, int pos2){

int temp = arr[pos1];

arr[pos1] = arr[pos2];

arr[pos2] = temp;

}

1
0

3
1

2
2

4
3

5
5

sortedArray

run



Review: Swapping Elements

11

public void run(){

int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int pos1, int pos2){

int temp = arr[pos1];

arr[pos1] = arr[pos2];

arr[pos2] = temp;

}

1
0

3
1

2
2

4
3

5
5

sortedArray

run

These are indices



Review: Swapping Elements

12

public void run(){

int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int pos1, int pos2){

int temp = arr[pos1];

arr[pos1] = arr[pos2];

arr[pos2] = temp;

}

1
0

3
1

2
2

4
3

5

arr

pos1 pos2

5

sortedArray

5

run swapElements

These are indices



Review: Swapping Elements

13

public void run(){

int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int pos1, int pos2){

int temp = arr[pos1];

arr[pos1] = arr[pos2];

arr[pos2] = temp;

}

1
0

3
1

2
2

4
3

5

arr

pos1 pos2

5

sortedArray

5

run swapElements



Review: Swapping Elements

14

public void run(){

int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int pos1, int pos2){

int temp = arr[pos1];

arr[pos1] = arr[pos2];

arr[pos2] = temp;

}

1
0

3
1

2
2

4
3

5

arr

pos1 pos2

5

sortedArray

5

run swapElements

3

temp



Review: Swapping Elements

15

public void run(){

int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int pos1, int pos2){

int temp = arr[pos1];

arr[pos1] = arr[pos2];

arr[pos2] = temp;

}

1
0

3
1

2
2

4
3

5

arr

pos1 pos2

5

sortedArray

5

run swapElements

3

temp



Review: Swapping Elements

16

public void run(){

int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int pos1, int pos2){

int temp = arr[pos1];

arr[pos1] = arr[pos2];

arr[pos2] = temp;

}

1
0

3
1

2
2

4
3

5

arr

pos1 pos2

5

sortedArray

5

run swapElements

3

temp



Review: Swapping Elements

17

public void run(){

int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int pos1, int pos2){

int temp = arr[pos1];

arr[pos1] = arr[pos2];

arr[pos2] = temp;

}

1
0

2
1

2
2

4
3

5

arr

pos1 pos2

5

sortedArray

5

run swapElements

3

temp



Review: Swapping Elements

18

public void run(){

int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int pos1, int pos2){

int temp = arr[pos1];

arr[pos1] = arr[pos2];

arr[pos2] = temp;

}

1
0

2
1

2
2

4
3

5

arr

pos1 pos2

5

sortedArray

5

run swapElements

3

temp



Review: Swapping Elements

19

public void run(){

int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int pos1, int pos2){

int temp = arr[pos1];

arr[pos1] = arr[pos2];

arr[pos2] = temp;

}

1
0

2
1

2
2

4
3

5

arr

pos1 pos2

5

sortedArray

5

run swapElements

3

temp



Review: Swapping Elements

20

public void run(){

int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int pos1, int pos2){

int temp = arr[pos1];

arr[pos1] = arr[pos2];

arr[pos2] = temp;

}

1
0

2
1

3
2

4
3

5

arr

pos1 pos2

5

sortedArray

5

run swapElements

3

temp



Review: Swapping Elements

21

public void run(){

int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int pos1, int pos2){

int temp = arr[pos1];

arr[pos1] = arr[pos2];

arr[pos2] = temp;

}

1
0

2
1

3
2

4
3

5

arr

pos1 pos2

5

sortedArray

5

run swapElements

3

temp



Review: Swapping Elements

22

public void run(){

int[] sortedArray = {1, 3, 2, 4}; // [1, 3, 2, 4]
swapElements(sortedArray, 1, 2);

}

private void swapElements(int[] arr, int pos1, int pos2){

int temp = arr[pos1];

arr[pos1] = arr[pos2];

arr[pos2] = temp;

}

1
0

2
1

3
2

4
3

5
5

sortedArray

run



Plan for Today

● Review: Arrays
● 2D Arrays
● Images as 2D Arrays
● Manipulating Images
● Practice: Grayscale

23



An Array

boolean[] b = new boolean[3];

24



An Array

boolean[] b = new boolean[3];

25

I want an array



An Array

boolean[] b = new boolean[3];

26

I want an array

that stores booleans



An Array

boolean[] b = new boolean[3];

27

false

false

false2

1

0



An Array

int[] a = new int[3];

28



An Array

int[] a = new int[3];

29

I want an array



An Array

int[] a = new int[3];

30

I want an array

that stores ints



An Array

int[] a = new int[3];

31

0

0

02

1

0



A Thought

* possibly a little mermaid reference 🐟 32

What if I want 
more?!?*



A Thought

* possibly a little mermaid reference 🐟 33

I want an array
that stores arrays



An Array... of Arrays

int[][] matrix = new int[3][4];

34



An Array... of Arrays

int[][] matrix = new int[3][4];

35

I want an array



An Array... of Arrays

int[][] matrix = new int[3][4];

36

I want an array

that stores int[]s



An Array... of Arrays

int[][] matrix = new int[3][4];

37

I want an array

that stores int[]s
aka, that stores arrays!



An Array... of Arrays

int[][] matrix = new int[3][4];

38

2

1

0
0
0

0
1

0
2

0
3

0
0

0
1

0
2

0
3

0
0

0
1

0
2

0
3



A 2D Array

int[][] matrix = new int[3][4];

39

0 0 0 0 0

0 0 0 0

0

0

0

1

0

2

0

3

1

2



A 2D Array

int[][] matrix = new int[3][4];

40

Number of rows

3

0 0 0 0 0

0 0 0 0

0

0

0

1

0

2

0

3

1

2



A 2D Array

int[][] matrix = new int[3][4];

41

0 0 0 0 0

0 0 0 0

0

0

0

1

0

2

0

3

1

2

Number of rows

Number of columns
4



Reasoning about 2D Arrays

There are two main ways to reason about a 2D array:

1.  As an array of arrays
● A 2D array is an array whose elements are 

themselves arrays

2. As a unit
● A 2D array represents a grid / matrix

42



Manipulating 2D Arrays

43

type[][] name = new type[numRows][numCols];

name[row][col];           // get element at row, col

name[row][col] = value;   // set element at row, col



Row, then Col

matrix[    row    ][    col    ]

44



Row, then Col

matrix[    row    ][    col    ]

45

R is for StanfoRd C is for Cal



Manipulating 2D Arrays

46

int[][] matrix = new int[3][4];

…

0 0 4 0 0

0 0 0 0

0

0

0

1

0

2

0

3

1

2



Manipulating 2D Arrays

47

int[][] matrix = new int[3][4];

…

int val = matrix[0][1];

0 0 4 0 0

0 0 0 0

0

0

0

1

0

2

0

3

1

2



Manipulating 2D Arrays

48

int[][] matrix = new int[3][4];

…

int val = matrix[0][1];   // 4

0 0 4 0 0

0 0 0 0

0

0

0

1

0

2

0

3

1

2



Manipulating 2D Arrays

49

int[][] matrix = new int[3][4];

…

int val = matrix[0][1];   // 4

matrix[1][3] = 8;
0 0 4 0 0

0 0 0 0

0

0

0

1

0

2

0

3

1

2



Manipulating 2D Arrays

50

int[][] matrix = new int[3][4];

…

int val = matrix[0][1];   // 4

matrix[1][3] = 8;
0 0 4 0 0

0 0 0 0

0

0

0

1

0

2

0

3

1

2



Manipulating 2D Arrays

51

int[][] matrix = new int[3][4];

…

int val = matrix[0][1];   // 4

matrix[1][3] = 8;
0 0 4 0 0

0 0 0 8

0

0

0

1

0

2

0

3

1

2



Manipulating 2D Arrays

52

int[][] matrix = new int[3][4];

…

int val = matrix[0][1];   // 4

matrix[1][3] = 8;

int[] firstRow = matrix[0];

0 0 4 0 0

0 0 0 8

0

0

0

1

0

2

0

3

1

2



Manipulating 2D Arrays

53

int[][] matrix = new int[3][4];

…

int val = matrix[0][1];   // 4

matrix[1][3] = 8;

int[] firstRow = matrix[0];

0 0 4 0 0

0 0 0 8

0

0

0

1

0

2

0

3

1

2



Manipulating 2D Arrays

54

int[][] matrix = new int[3][4];

…

int val = matrix[0][1];   // 4

matrix[1][3] = 8;

int[] firstRow = matrix[0];

// note: no way to get single col

0 0 4 0 0

0 0 0 8

0

0

0

1

0

2

0

3

1

2



2D Array Dimensions
● How can we get the number of rows using .length? How 

about the number of columns?

55

0 0 0 0 0

0 0 0 0

0

0

0

1

0

2

0

3

1

2



2D Array Dimensions
● How can we get the number of rows using .length? How 

about the number of columns?

56

2

1

0
0
0

0
1

0
2

0
3

0
0

0
1

0
2

0
3

0
0

0
1

0
2

0
3



2D Array Dimensions
● How can we get the number of rows using .length? How 

about the number of columns?

57

2

1

0
0
0

0
1

0
2

0
3

0
0

0
1

0
2

0
3

0
0

0
1

0
2

0
3

int numRows = ??



2D Array Dimensions
● How can we get the number of rows using .length? How 

about the number of columns?

58

2

1

0
0
0

0
1

0
2

0
3

0
0

0
1

0
2

0
3

0
0

0
1

0
2

0
3

int numRows = ??



2D Array Dimensions
● How can we get the number of rows using .length? How 

about the number of columns?

59

2

1

0
0
0

0
1

0
2

0
3

0
0

0
1

0
2

0
3

0
0

0
1

0
2

0
3

int numRows = arr.length;



2D Array Dimensions
● How can we get the number of rows using .length? How 

about the number of columns?

60

2

1

0
0
0

0
1

0
2

0
3

0
0

0
1

0
2

0
3

0
0

0
1

0
2

0
3

int numRows = arr.length;

int numCols = ??



2D Array Dimensions
● How can we get the number of rows using .length? How 

about the number of columns?

61

2

1

0
0
0

0
1

0
2

0
3

0
0

0
1

0
2

0
3

0
0

0
1

0
2

0
3

int numRows = arr.length;

int numCols = ??



2D Array Dimensions
● How can we get the number of rows using .length? How 

about the number of columns?

62

2

1

0
0
0

0
1

0
2

0
3

0
0

0
1

0
2

0
3

0
0

0
1

0
2

0
3

int numRows = arr.length;

// # entries in row 0 = # cols

int numCols = arr[0].length;



Get Number of Rows

private int numRows(int[][] matrix) { 

return matrix.length; 

}

63

0 0 0 0 0

0 0 0 0

0

0

0

1

0

2

0

3

1

2

3



Get Number of Columns

private int numCols(int[][] matrix) { 

return matrix[0].length; 

}

64

0 0 0 0 0

0 0 0 0

0

0

0

1

0

2

0

3

1

2

4



2D Arrays       For Loops

● The canonical way to loop over a 2D array is with a 
double for loop

type[][] arr = …
for (int row = 0; row < arr.length; row++) { 

for (int col = 0; col < arr[0].length; col++) {

// do something with arr[row][col] ...

} 

}

65



2D Arrays       For Loops

● The canonical way to loop over a 2D array is with a 
double for loop

type[][] arr = …
for (int row = 0; row < numRows(arr); row++) { 

for (int col = 0; col < numCols(arr); col++) {

// do something with arr[row][col] ...

} 

}

66



2D Arrays       For Loops
int[][] arr = new int[3][4]; 

for (int row = 0; row < numRows(arr); row++) { 

for (int col = 0; col < numCols(arr); col++) {

arr[row][col] = row + col;

} 

}

67

0 0 0 0 0

0 0 0 0

0

0

0

1

0

2

0

3

1

2



2D Arrays       For Loops
int[][] arr = new int[3][4]; 

for (int row = 0; row < numRows(arr); row++) { 

for (int col = 0; col < numCols(arr); col++) {

arr[row][col] = row + col;

} 

}

68

0 0 0 0 0

0 0 0 0

0

0

0

1

0

2

0

3

1

2



2D Arrays       For Loops
int[][] arr = new int[3][4]; 

for (int row = 0; row < numRows(arr); row++) { 

for (int col = 0; col < numCols(arr); col++) {

arr[row][col] = row + col;

} 

}

69

0 0 0 0 0

0 0 0 0

0

0

0

1

0

2

0

3

1

2



2D Arrays       For Loops
int[][] arr = new int[3][4]; 

for (int row = 0; row < numRows(arr); row++) { 

for (int col = 0; col < numCols(arr); col++) {

arr[row][col] = row + col;

} 

}

70

0 0 1 0 0

0 0 0 0

0

0

0

1

0

2

0

3

1

2



2D Arrays       For Loops
int[][] arr = new int[3][4]; 

for (int row = 0; row < numRows(arr); row++) { 

for (int col = 0; col < numCols(arr); col++) {

arr[row][col] = row + col;

} 

}

71

0 0 1 0 0

0 0 0 0

0

0

0

1

0

2

0

3

1

2



2D Arrays       For Loops
int[][] arr = new int[3][4]; 

for (int row = 0; row < numRows(arr); row++) { 

for (int col = 0; col < numCols(arr); col++) {

arr[row][col] = row + col;

} 

}

72

0 0 1 2 0

0 0 0 0

0

0

0

1

0

2

0

3

1

2



2D Arrays       For Loops
int[][] arr = new int[3][4]; 

for (int row = 0; row < numRows(arr); row++) { 

for (int col = 0; col < numCols(arr); col++) {

arr[row][col] = row + col;

} 

}

73

0 0 1 2 0

0 0 0 0

0

0

0

1

0

2

0

3

1

2



2D Arrays       For Loops
int[][] arr = new int[3][4]; 

for (int row = 0; row < numRows(arr); row++) { 

for (int col = 0; col < numCols(arr); col++) {

arr[row][col] = row + col;

} 

}

74

0 0 1 2 3

0 0 0 0

0

0

0

1

0

2

0

3

1

2



2D Arrays       For Loops
int[][] arr = new int[3][4]; 

for (int row = 0; row < numRows(arr); row++) { 

for (int col = 0; col < numCols(arr); col++) {

arr[row][col] = row + col;

} 

}

75

0 0 1 2 3

0 0 0 0

0

0

0

1

0

2

0

3

1

2



2D Arrays       For Loops
int[][] arr = new int[3][4]; 

for (int row = 0; row < numRows(arr); row++) { 

for (int col = 0; col < numCols(arr); col++) {

arr[row][col] = row + col;

} 

}

76

0 0 1 2 3

1 0 0 0

0

0

0

1

0

2

0

3

1

2



2D Arrays       For Loops
int[][] arr = new int[3][4]; 

for (int row = 0; row < numRows(arr); row++) { 

for (int col = 0; col < numCols(arr); col++) {

arr[row][col] = row + col;

} 

}

77

0 0 1 2 3

1 0 0 0

0

0

0

1

0

2

0

3

1

2



2D Arrays       For Loops
int[][] arr = new int[3][4]; 

for (int row = 0; row < numRows(arr); row++) { 

for (int col = 0; col < numCols(arr); col++) {

arr[row][col] = row + col;

} 

}

78

0 0 1 2 3

1 2 0 0

0

0

0

1

0

2

0

3

1

2



2D Arrays       For Loops
int[][] arr = new int[3][4]; 

for (int row = 0; row < numRows(arr); row++) { 

for (int col = 0; col < numCols(arr); col++) {

arr[row][col] = row + col;

} 

}

79

0 0 1 2 3

1 2 0 0

0

0

0

1

0

2

0

3

1

2



2D Arrays       For Loops
int[][] arr = new int[3][4]; 

for (int row = 0; row < numRows(arr); row++) { 

for (int col = 0; col < numCols(arr); col++) {

arr[row][col] = row + col;

} 

}

80

0 0 1 2 3

1 2 3 4

2

0

3

1

4

2

5

3

1

2



2D Arrays on 1 Slide
1. Make a 2D array

double[][] grid = new double[nRows][nCols];

81



2D Arrays on 1 Slide
1. Make a 2D array

double[][] grid = new double[nRows][nCols];

2. Set and get values from a 2D array using bracket notation
grid[2][1] = 2.2;

println(“Upper left val is: ” + grid[0][0]);

82



2D Arrays on 1 Slide
1. Make a 2D array

double[][] grid = new double[nRows][nCols];

2. Set and get values from a 2D array using bracket notation
grid[2][1] = 2.2;

println(“Upper left val is: ” + grid[0][0]);

3. Get the number of rows and columns of a 2D array (tip: define method)
int numRows = grid.length;

int numCols = grid[0].length;

83



2D Arrays on 1 Slide
1. Make a 2D array

double[][] grid = new double[nRows][nCols];

2. Set and get values from a 2D array using bracket notation
grid[2][1] = 2.2;

println(“Upper left val is: ” + grid[0][0]);

3. Get the number of rows and columns of a 2D array (tip: define method)
int numRows = grid.length;

int numCols = grid[0].length;

4. Use a double for loop to iterate over the entire 2D array
for (int r = 0; r < grid.length; r++) {

for (int c = 0; c < grid[0].length; c++) {

// something with grid[r][c]

}

} 84



Plan for Today

● Review: Arrays
● 2D Arrays
● Images as 2D Arrays
● Manipulating Images
● Practice: Grayscale

85



86

Images are 
2D arrays!



Images

● Images are 2D arrays of pixels
● Pixels are simply integers with red, green, and blue 

components (each between 0 and 255)

87



Images as 2D Arrays

We can get a GImage as a 2D array of pixels.

GImage img = new GImage(“res/passionflower.jpg”); 

int[][] pixels = img.getPixelArray(); 

int topLeftPixel = pixels[0][0];

88



Time for Art

89



Isn’t This Art???

90

Not really the 
same, but okay...



Let’s do Pointillism!

91

Let’s make this

A Sunday on La Grande Jatte, Georges Seurat



Example: Pointillism

92



Example: Pointillism

93



Example: Pointillism

Repeat many times: 

1. Pick a random pixel from an image.

2. Find the pixel’s color 

3. “Paint” a rather large brush stroke at a 

corresponding location, with the color

94



Example: Pointillism

95



Example: Pointillism

96

c = 220

r = 340



Example: Pointillism

97

c = 220

r = 340



Example: Pointillism

98



Let’s Code It!

99



Plan for Today

● Review: Arrays
● 2D Arrays
● Images as 2D Arrays
● Manipulating Images
● Practice: Grayscale

100



Working with Image Arrays
GImage img = new GImage(“res/passionflower.jpg”); 

101



Working with Image Arrays
GImage img = new GImage(“res/passionflower.jpg”); 

1. Get a GImage as a 2D array of pixels
int[][] pixels = img.getPixelArray();

102



Working with Image Arrays
GImage img = new GImage(“res/passionflower.jpg”); 

1. Get a GImage as a 2D array of pixels
int[][] pixels = img.getPixelArray();

2. Modify the pixel array or create a new pixel array
// access individual pixels with: pixels[r][c]

103



Working with Image Arrays
GImage img = new GImage(“res/passionflower.jpg”); 

1. Get a GImage as a 2D array of pixels
int[][] pixels = img.getPixelArray();

2. Modify the pixel array or create a new pixel array
// access individual pixels with: pixels[r][c]

3. Update or create a new GImage with the modified pixels
img.setPixelArray(pixels);           // update image 

104



Working with Image Arrays
GImage img = new GImage(“res/passionflower.jpg”); 

1. Get a GImage as a 2D array of pixels
int[][] pixels = img.getPixelArray();

2. Modify the pixel array or create a new pixel array
// access individual pixels with: pixels[r][c]

3. Update or create a new GImage with the modified pixels
img.setPixelArray(pixels);           // update image 

// OR

GImage newImg = new GImage(pixels);  // make new GImage 
105



Working with Image Arrays
GImage img = new GImage(“res/passionflower.jpg”); 

1. Get a GImage as a 2D array of pixels
int[][] pixels = img.getPixelArray();

2. Modify the pixel array or create a new pixel array
// access individual pixels with: pixels[r][c]

3. Update or create a new GImage with the modified pixels
img.setPixelArray(pixels);           // update image 

// OR

GImage newImg = new GImage(pixels);  // make new GImage 
106



Modifying Image Pixels
There are many neat image 
algorithms based on modifying 
individual pixels in an image:

● grayscale
● brighten
● normalize
● remove red-eye
● …

107



Pixels and RGB

108

● Pixels encode the R, G, and B values (0-255) of a pixel into a 
single integer. 

● You can convert between this pixel value and the individual 
RGB values.



Pixels and RGB

109

You can get individual red, green, and blue values from a pixel.

int[][] pixels = image.getPixelArray(); 

int pixel = pixels[0][0];          

int red = GImage.getRed(pixel);      // 0-255

int green = GImage.getGreen(pixel);  // 0-255

int blue = GImage.getBlue(pixel);    // 0-255



Pixels and RGB

110

You can also create a pixel from individual R, G, B values.

int red = ...

int green = ...

int blue = ...

int pixel = GImage.createRGBPixel(red, green, blue);



Modifying Pixels
● Extract pixel RGB colors with GImage.getRed/Blue/Green.

int red = GImage.getRed(pixels[0][0]);     // 0-255

int green = GImage.getGreen(pixels[0][0]); // 0-255

int blue = GImage.getBlue(pixels[0][0]);   // 0-255

111



Modifying Pixels
● Extract pixel RGB colors with GImage.getRed/Blue/Green.

int red = GImage.getRed(pixels[0][0]);     // 0-255

int green = GImage.getGreen(pixels[0][0]); // 0-255

int blue = GImage.getBlue(pixels[0][0]);   // 0-255

● Modify the color components for a given pixel.
red = 0; // remove redness

112



Modifying Pixels
● Extract pixel RGB colors with GImage.getRed/Blue/Green.

int red = GImage.getRed(pixels[0][0]);     // 0-255

int green = GImage.getGreen(pixels[0][0]); // 0-255

int blue = GImage.getBlue(pixels[0][0]);   // 0-255

● Modify the color components for a given pixel.
red = 0; // remove redness

● Combine the RGB values back together into a single int.
pixels[0][0] = GImage.createRGBPixel(red, green, blue);

113



Modifying Pixels
● Extract pixel RGB colors with GImage.getRed/Blue/Green.

int red = GImage.getRed(pixels[0][0]);     // 0-255

int green = GImage.getGreen(pixels[0][0]); // 0-255

int blue = GImage.getBlue(pixels[0][0]);   // 0-255

● Modify the color components for a given pixel.
red = 0; // remove redness

● Combine the RGB values back together into a single int.
pixels[0][0] = GImage.createRGBPixel(red, green, blue);

● Update image with your modified pixels when finished.
image.setPixelArray(pixels); 114



GImage Pixel Methods

115



A Note on Image Size

● Destination image is same size      → often modify array in place
● Destination image is different size → need a new array

116



A Note on Image Size

● Destination image is same size      → often modify array in place
● Destination image is different size → need a new array

Example: Halve the size of an image.

int[][] pixels = img.getPixelArray(); 

int[][] smaller = new int[numRows(pixels) / 2][numCols(pixels)  / 2];

... 

// set to be the pixels of ‘smaller’ 

img.setPixelArray(smaller);

117



Plan for Today

● Review: Arrays
● 2D Arrays
● Images as 2D Arrays
● Manipulating Images
● Practice: Grayscale

118



Let’s Code It!

119



Plan for Today

● Review: Arrays
● 2D Arrays
● Images as 2D Arrays
● Manipulating Images
● Practice: Grayscale

Extra practice: Brighten
Reminder: MQE Feedback form

Next Time: ArrayLists!
120



[Extra] Brighten
● Practice: write a program that brightens an image each time 

you click on it!
● You can brighten a pixel by adding a small value (say, 5) to 

each of the red, green, and blue values.
● See lecture code for solution.

121


