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With inspiration from slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, Chris Piech and others.



Announcements

● Assignment 4 due Monday July 29th at 10AM
● Blank lecture code on website schedule
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Learning Goal for Today

Know how to store data in and retrieve data from an

ArrayList
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Plan for Today

● Review: 2D Arrays
● ArrayLists
● Example: Reversible Writing
● Example: Trip Planner
● ArrayLists vs. Arrays
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Plan for Today

● Review: 2D Arrays
● ArrayLists
● Example: Reversible Writing
● Example: Trip Planner
● ArrayLists vs. Arrays

5



Review 2D: Arrays

int[][] matrix = new int[3][4];

6

# rows # columns



Review 2D: Arrays

int[][] matrix = new int[3][4];
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Review 2D: Arrays

int[][] matrix = new int[3][4];

matrix[row][col];           // get element

matrix[row][col] = value;   // set element
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Review: 2D Array Dimensions
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private int numRows(int[][] matrix) { 

return matrix.length; 

}

private int numCols(int[][] matrix) { 

return matrix[0].length; 

}



Review: 2D Arrays       For Loops

● The canonical way to loop over a 2D array is with a 
double for loop

type[][] arr = …
for (int row = 0; row < numRows(arr); row++) { 

for (int col = 0; col < numCols(arr); col++) {

// do something with arr[row][col] ...

} 

}
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Review: images are 
2D arrays of pixels.



GImage Pixel Methods
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Plan for Today

● Review: 2D Arrays
● ArrayLists
● Example: Reversible Writing
● Example: Trip Planner
● ArrayLists vs. Arrays
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Limitations of Arrays
● Size must be specified upon creation
● Can’t add/remove/insert elements later (because size is fixed)
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Limitations of Arrays
● Size must be specified upon creation
● Can’t add/remove/insert elements later (because size is fixed)
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Limitations of Arrays
● Size must be specified upon creation
● Can’t add/remove/insert elements later (because size is fixed)
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How can we help        ?
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Introducing ArrayLists
● An ordered, resizable list of information
● Can add and remove elements (among other cool functionality)
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Introducing ArrayLists
● An ordered, resizable list of information
● Can add and remove elements (among other cool functionality)

19

1

myArrayList

Can I join?

0 1

2 3

2



Introducing ArrayLists
● An ordered, resizable list of information
● Can add and remove elements (among other cool functionality)
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Introducing ArrayLists
● An ordered, resizable list of information
● Can add and remove elements (among other cool functionality)
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Introducing ArrayLists
● An ordered, resizable list of information
● Can add and remove elements (among other cool functionality)
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Introducing ArrayLists
● An ordered, resizable list of information
● Can add and remove elements (among other cool functionality)
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ArrayLists
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● An ordered, resizable list of information
● Can add and remove elements (among other cool functionality)
● Homogenous
● Can store any Object type
● Access individual items by index
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Our First ArrayList

ArrayList<String> myArrayList = new ArrayList<String>();
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Our First ArrayList

ArrayList<String> myArrayList = new ArrayList<String>();
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import java.util.*;



Our First ArrayList

ArrayList<String> myArrayList = new ArrayList<String>();
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Our First ArrayList

ArrayList<String> myArrayList = new ArrayList<String>();
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Type of thing your 
ArrayList will store



Our First ArrayList

ArrayList<String> myArrayList = new ArrayList<String>();
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Our First ArrayList

ArrayList<String> myArrayList = new ArrayList<String>();
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Our First ArrayList

ArrayList<String> myArrayList = new ArrayList<String>();
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Same type here.



Our First ArrayList

ArrayList<String> myArrayList = new ArrayList<>();______
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Can optionally leave 
empty because of 

type inference 



Our First ArrayList

ArrayList<String> myArrayList = new ArrayList<String>();
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Our First ArrayList
ArrayList<String> myArrayList = new ArrayList<String>();  // initially empty 
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myArrayList



Our First ArrayList
ArrayList<String> myArrayList = new ArrayList<String>();  // initially empty 

// Adds elements to the back 

myArrayList.add(“hi”);
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Our First ArrayList
ArrayList<String> myArrayList = new ArrayList<String>();  // initially empty 

// Adds elements to the back 

myArrayList.add(“hi”);

myArrayList.add(“there”);
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Our First ArrayList
ArrayList<String> myArrayList = new ArrayList<String>();  // initially empty 

// Adds elements to the back 

myArrayList.add(“hi”);

myArrayList.add(“there”);

// Access elements by index (starting at 0!) 

println(myArrayList.get(0));   // prints “hi” 

println(myArrayList.get(1));   // prints “there”
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Our First ArrayList
ArrayList<String> myArrayList = new ArrayList<String>();  // initially empty 

// Adds elements to the back 

myArrayList.add(“hi”);

myArrayList.add(“there”);

// Access elements by index (starting at 0!) 

println(myArrayList.get(0));   // prints “hi” 

println(myArrayList.get(1));   // prints “there”

// Wrong type - bad times! Won’t compile 

GLabel label = new GLabel(“hi there”); 

myArrayList.add(label);
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Our First ArrayList
ArrayList<String> myArrayList = new ArrayList<String>();  // initially empty 

// Adds elements to the back 

myArrayList.add(“hi”);

myArrayList.add(“there”);

// Access elements by index (starting at 0!) 

println(myArrayList.get(0));   // prints “hi” 

println(myArrayList.get(1));   // prints “there”

// Wrong type - bad times! Won’t compile 

GLabel label = new GLabel(“hi there”); 

myArrayList.add(label);

// Invalid index – crashes! IndexOutOfBounds Exception 

println(myArrayList.get(2));
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Looping over ArrayLists
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ArrayList<String> myArrayList = new ArrayList<String>(); 

// Adds elements to the back 

myArrayList.add(“hi”);

myArrayList.add(“there”);

// Access elements by index (starting at 0!) 

for (int i = 0; i < myArrayList.size(); i++) {

String str = myArrayList.get(i);

println(str);

}

// hi

// there



Looping over ArrayLists
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ArrayList<String> myArrayList = new ArrayList<String>(); 

// Adds elements to the back 

myArrayList.add(“hi”);

myArrayList.add(“there”);

// Access elements by index (starting at 0!) 

for (int i = 0; i < myArrayList.size(); i++) {

String str = myArrayList.get(i);

println(str);

}

// A beautiful way to access each element

for (String str : myArrayList) {

println(str);

}



Looping over ArrayLists
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ArrayList<String> myArrayList = new ArrayList<String>(); 

// Adds elements to the back 

myArrayList.add(“hi”);

myArrayList.add(“there”);

// Access elements by index (starting at 0!) 

for (int i = 0; i < myArrayList.size(); i++) {

String str = myArrayList.get(i);

println(str);

}

// A beautiful way to access each element

for (String str : myArrayList) {

println(str);

}



ArrayList Methods
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<T> ?
This means, 

whatever Type your 
ArrayList stores



Plan for Today

● Review: 2D Arrays
● ArrayLists
● Example: Reversible Writing
● Example: Trip Planner
● ArrayLists vs. Arrays
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Example: Reversible Writing
Let’s write a program that reverses a text file.

I am not a person who contributes 
And I refuse to believe that 

I will be useful
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Example: Reversible Writing
Let’s write a program that reverses a text file.

I am not a person who contributes 
And I refuse to believe that 

I will be useful

I will be useful
And I refuse to believe that 

I am not a person who contributes 

46
"I Have a Dream" by Antonia Lee, Sara Fung, Christy Fung, Rachel Lam 
http://poets.spice.org.hk/index.php?option=com_content&view=article&id=45:my-family&catid=6:reversepoem&Itemid=7

http://poets.spice.org.hk/index.php?option=com_content&view=article&id=45:my-family&catid=6:reversepoem&Itemid=7


Example: Reversible Writing
Let’s write a program that reverses a text file.
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“I am not a person who contributes”



Example: Reversible Writing
Let’s write a program that reverses a text file.
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“I am not a person who contributes”
“And I refuse to believe that”



Example: Reversible Writing
Let’s write a program that reverses a text file.
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“I am not a person who contributes”
“And I refuse to believe that”

“I will be useful”



Example: Reversible Writing
Let’s write a program that reverses a text file.
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“I am not a person who contributes”
“And I refuse to believe that”

“I will be useful”

Key Idea # 1: fill an ArrayList 
with each line in the file.



Example: Reversible Writing
Let’s write a program that reverses a text file.
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“I will be useful”



Example: Reversible Writing
Let’s write a program that reverses a text file.
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“I am not a person who contributes”
“And I refuse to believe that”

“I will be useful”



Example: Reversible Writing
Let’s write a program that reverses a text file.
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“I am not a person who contributes”
“And I refuse to believe that”

“I will be useful”



Example: Reversible Writing
Let’s write a program that reverses a text file.
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“I am not a person who contributes”
“And I refuse to believe that”

“I will be useful”

Key Idea # 2: print the ArrayList 
items in reverse order.



Example: Reversible Writing
try { 

Scanner scanner = new Scanner(new File(FILENAME)); 

ArrayList<String> lines = new ArrayList<String>(); 

// Read all lines and store in our ArrayList 

while (scanner.hasNextLine()) {

lines.add(scanner.nextLine()); 

} 

// Output the lines from back to front 

for (int i = lines.size() - 1; i >= 0; i--) { 

println(lines.get(i)); 

}

scanner.close();

} catch (IOException ex) { 

println("Could not read file."); 

} 55
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Example: Reversible Writing
try { 

Scanner scanner = new Scanner(new File(FILENAME)); 

ArrayList<String> lines = new ArrayList<String>(); 

// Read all lines and store in our ArrayList 

while (scanner.hasNextLine()) {

lines.add(scanner.nextLine()); 

} 

// Output the lines from back to front 
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println(lines.get(i)); 
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} catch (IOException ex) { 

println("Could not read file."); 

} 62



Plan for Today

● Review: 2D Arrays
● ArrayLists
● Example: Reversible Writing
● Example: Trip Planner
● ArrayLists vs. Arrays
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A Note on Insert/Remove
● If you insert or remove an element from a list, any elements to 

the right of it shift to fit
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A Note on Insert/Remove
● If you insert or remove an element from a list, any elements to 

the right of it shift to fit
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list.add(2, 42); // add the value 42 before index 2



A Note on Insert/Remove
● If you insert or remove an element from a list, any elements to 

the right of it shift to fit
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list.add(2, 42); // add the value 42 before index 2

list.remove(1); // remove the element at index 1



Example: Trip Planner
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It’s summer, and you want to travel! Let’s write a program to plan our itinerary.

● Program first prompts the user for all the cities they want to visit
● Then, it asks user to re-enter them in the order they’d like to visit them
● Finally, outputs the itinerary: the order in which to visit the cities



Trip Planner: Approach

Cities:
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Order:

Florence



Trip Planner: Approach

Cities:
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Order:

Florence Singapore



Trip Planner: Approach
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Trip Planner: Approach
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Trip Planner: Approach
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Trip Planner: Approach
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Trip Planner: Approach

Cities:

74

Order:

Florence

Singapore Seattle



Trip Planner: Approach

Cities:

75

Order:

Florence

Singapore Seattle



Trip Planner: Approach

Cities:
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Order:

Done!

Singapore Seattle Florence



Let’s Code It!
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Plan for Today

● Review: 2D Arrays
● ArrayLists
● Example: Reversible Writing
● Example: Trip Planner
● ArrayLists vs. Arrays
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ArrayLists + Primitives

// Doesn’t compile ~ sad times :(

ArrayList<int> myArrayList = new ArrayList<int>();
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Unlike Arrays, ArrayLists 
can only store Objects.



Wrapper Classes
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ArrayLists + Primitives
// Use wrapper classes when making an ArrayList 

ArrayList<Integer> numList = new ArrayList<Integer>();

// Java converts Integer <-> int automatically!

numList.add(22); 

numList.add(44); 

int firstNum = numList.get(0);  // 22 

int secondNum = numList.get(1); // 44
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Conversion happens automatically!



An Example
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Let’s check out 
an example



Arrays vs. ArrayLists
Operation

Make a new one

Length?

Get element?

Set element?

Loop?
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Arrays

int arr = new int[5];

arr.length

arr[i] 

arr[i] = value

for(int i = 0; i < arr.length; i++) 

ArrayLists

ArrayList<String> list = new 

ArrayList<String>();

list.size()

list.get(i)

list.set(i, value)

for(String value : list)



Array vs. ArrayLists
Why do both of these exist in the language?
● Arrays are Java's fundamental data storage
● ArrayList is a library built on top of an array 

When would you choose an array over an ArrayList? 
● When you need a fixed size that you know ahead of time

○ Simpler syntax for getting/setting, more efficient
● Multi-dimensional arrays (e.g. images)
● Histograms/tallying
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[Extra Practice] Picking Berries
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[Extra Practice] Picking Berries
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When you don’t know how many            are coming to the party
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I love ArrayLists!!
 I brought all my friends



Plan for Today

● Review: 2D Arrays
● ArrayLists
● Example: Reversible Writing
● Example: Trip Planner
● ArrayLists vs. Arrays

Next Time: HashMaps!
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