
ArrayLists

CS106A, Summer 2019
Sarai Gould && Laura Cruz-Albrecht

Lecture 18

With inspiration from slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, Chris Piech and others.

Announcements

● Assignment 4 due Monday July 29th at 10AM
● Blank lecture code on website schedule

2

Learning Goal for Today

Know how to store data in and retrieve data from an

ArrayList

3

Plan for Today

● Review: 2D Arrays
● ArrayLists
● Example: Reversible Writing
● Example: Trip Planner
● ArrayLists vs. Arrays

4

Plan for Today

● Review: 2D Arrays
● ArrayLists
● Example: Reversible Writing
● Example: Trip Planner
● ArrayLists vs. Arrays

5

Review 2D: Arrays

int[][] matrix = new int[3][4];

6

rows # columns

Review 2D: Arrays

int[][] matrix = new int[3][4];

7

2

1

0
0
0
0
1
0
2
0
3

0
0
0
1
0
2
0
3

0
0
0
1
0
2
0
3

0 0 0 0 0

0 0 0 0

0

0

0

1

0

2

0

3

1

2

An array of arrays A unit (ie, a grid/matrix)

Review 2D: Arrays

int[][] matrix = new int[3][4];

matrix[row][col]; // get element

matrix[row][col] = value; // set element

8

Review: 2D Array Dimensions

9

private int numRows(int[][] matrix) {

return matrix.length;

}

private int numCols(int[][] matrix) {

return matrix[0].length;

}

Review: 2D Arrays For Loops

● The canonical way to loop over a 2D array is with a
double for loop

type[][] arr = …
for (int row = 0; row < numRows(arr); row++) {

for (int col = 0; col < numCols(arr); col++) {

// do something with arr[row][col] ...

}

}

10

11

Review: images are
2D arrays of pixels.

GImage Pixel Methods

12

Plan for Today

● Review: 2D Arrays
● ArrayLists
● Example: Reversible Writing
● Example: Trip Planner
● ArrayLists vs. Arrays

13

Limitations of Arrays
● Size must be specified upon creation
● Can’t add/remove/insert elements later (because size is fixed)

14

Limitations of Arrays
● Size must be specified upon creation
● Can’t add/remove/insert elements later (because size is fixed)

15

1

0

2

1

3

2

myArray

Can I join?

hedgehog icon from Slack

Limitations of Arrays
● Size must be specified upon creation
● Can’t add/remove/insert elements later (because size is fixed)

16

1

0

2

1

3

2

myArray

Can I join?
Sorry

How can we help ?

17

Introducing ArrayLists
● An ordered, resizable list of information
● Can add and remove elements (among other cool functionality)

18

Introducing ArrayLists
● An ordered, resizable list of information
● Can add and remove elements (among other cool functionality)

19

1

myArrayList

Can I join?

0 1

2 3

2

Introducing ArrayLists
● An ordered, resizable list of information
● Can add and remove elements (among other cool functionality)

20

1

myArrayList

Can I join?
Yes!

0 1

2 3

2

Introducing ArrayLists
● An ordered, resizable list of information
● Can add and remove elements (among other cool functionality)

21

1

myArrayList

yay!

0 1

2 3

2

3

3

Introducing ArrayLists
● An ordered, resizable list of information
● Can add and remove elements (among other cool functionality)

22

1

myArrayList

0 1

2 3

2

3

3

ooh can i
come too??

Introducing ArrayLists
● An ordered, resizable list of information
● Can add and remove elements (among other cool functionality)

23

1

myArrayList

0 1

2 3

2

3

3

3

4

ArrayLists

24

● An ordered, resizable list of information
● Can add and remove elements (among other cool functionality)
● Homogenous
● Can store any Object type
● Access individual items by index

1

myArrayList

0 1

2 3

2

3

3

3

4

Our First ArrayList

ArrayList<String> myArrayList = new ArrayList<String>();

25

Our First ArrayList

ArrayList<String> myArrayList = new ArrayList<String>();

26

import java.util.*;

Our First ArrayList

ArrayList<String> myArrayList = new ArrayList<String>();

27

Our First ArrayList

ArrayList<String> myArrayList = new ArrayList<String>();

28

Type of thing your
ArrayList will store

Our First ArrayList

ArrayList<String> myArrayList = new ArrayList<String>();

29

Our First ArrayList

ArrayList<String> myArrayList = new ArrayList<String>();

30

Our First ArrayList

ArrayList<String> myArrayList = new ArrayList<String>();

31

Same type here.

Our First ArrayList

ArrayList<String> myArrayList = new ArrayList<>();______

32

Can optionally leave
empty because of

type inference

Our First ArrayList

ArrayList<String> myArrayList = new ArrayList<String>();

33

Our First ArrayList
ArrayList<String> myArrayList = new ArrayList<String>(); // initially empty

34

myArrayList

Our First ArrayList
ArrayList<String> myArrayList = new ArrayList<String>(); // initially empty

// Adds elements to the back

myArrayList.add(“hi”);

35

myArrayList
0

“hi”

Our First ArrayList
ArrayList<String> myArrayList = new ArrayList<String>(); // initially empty

// Adds elements to the back

myArrayList.add(“hi”);

myArrayList.add(“there”);

36

myArrayList
0 1

“hi” “there”

Our First ArrayList
ArrayList<String> myArrayList = new ArrayList<String>(); // initially empty

// Adds elements to the back

myArrayList.add(“hi”);

myArrayList.add(“there”);

// Access elements by index (starting at 0!)

println(myArrayList.get(0)); // prints “hi”

println(myArrayList.get(1)); // prints “there”

37

myArrayList
0 1

“hi” “there”

Our First ArrayList
ArrayList<String> myArrayList = new ArrayList<String>(); // initially empty

// Adds elements to the back

myArrayList.add(“hi”);

myArrayList.add(“there”);

// Access elements by index (starting at 0!)

println(myArrayList.get(0)); // prints “hi”

println(myArrayList.get(1)); // prints “there”

// Wrong type - bad times! Won’t compile

GLabel label = new GLabel(“hi there”);

myArrayList.add(label);

38

myArrayList
0 1

“hi” “there”

Our First ArrayList
ArrayList<String> myArrayList = new ArrayList<String>(); // initially empty

// Adds elements to the back

myArrayList.add(“hi”);

myArrayList.add(“there”);

// Access elements by index (starting at 0!)

println(myArrayList.get(0)); // prints “hi”

println(myArrayList.get(1)); // prints “there”

// Wrong type - bad times! Won’t compile

GLabel label = new GLabel(“hi there”);

myArrayList.add(label);

// Invalid index – crashes! IndexOutOfBounds Exception

println(myArrayList.get(2));
39

myArrayList
0 1

“hi” “there”

Looping over ArrayLists

40

ArrayList<String> myArrayList = new ArrayList<String>();

// Adds elements to the back

myArrayList.add(“hi”);

myArrayList.add(“there”);

// Access elements by index (starting at 0!)

for (int i = 0; i < myArrayList.size(); i++) {

String str = myArrayList.get(i);

println(str);

}

// hi

// there

Looping over ArrayLists

41

ArrayList<String> myArrayList = new ArrayList<String>();

// Adds elements to the back

myArrayList.add(“hi”);

myArrayList.add(“there”);

// Access elements by index (starting at 0!)

for (int i = 0; i < myArrayList.size(); i++) {

String str = myArrayList.get(i);

println(str);

}

// A beautiful way to access each element

for (String str : myArrayList) {

println(str);

}

Looping over ArrayLists

42

ArrayList<String> myArrayList = new ArrayList<String>();

// Adds elements to the back

myArrayList.add(“hi”);

myArrayList.add(“there”);

// Access elements by index (starting at 0!)

for (int i = 0; i < myArrayList.size(); i++) {

String str = myArrayList.get(i);

println(str);

}

// A beautiful way to access each element

for (String str : myArrayList) {

println(str);

}

ArrayList Methods

43

<T> ?
This means,

whatever Type your
ArrayList stores

Plan for Today

● Review: 2D Arrays
● ArrayLists
● Example: Reversible Writing
● Example: Trip Planner
● ArrayLists vs. Arrays

44

Example: Reversible Writing
Let’s write a program that reverses a text file.

I am not a person who contributes
And I refuse to believe that

I will be useful

45

Example: Reversible Writing
Let’s write a program that reverses a text file.

I am not a person who contributes
And I refuse to believe that

I will be useful

I will be useful
And I refuse to believe that

I am not a person who contributes

46
"I Have a Dream" by Antonia Lee, Sara Fung, Christy Fung, Rachel Lam
http://poets.spice.org.hk/index.php?option=com_content&view=article&id=45:my-family&catid=6:reversepoem&Itemid=7

http://poets.spice.org.hk/index.php?option=com_content&view=article&id=45:my-family&catid=6:reversepoem&Itemid=7

Example: Reversible Writing
Let’s write a program that reverses a text file.

47

“I am not a person who contributes”

Example: Reversible Writing
Let’s write a program that reverses a text file.

48

“I am not a person who contributes”
“And I refuse to believe that”

Example: Reversible Writing
Let’s write a program that reverses a text file.

49

“I am not a person who contributes”
“And I refuse to believe that”

“I will be useful”

Example: Reversible Writing
Let’s write a program that reverses a text file.

50

“I am not a person who contributes”
“And I refuse to believe that”

“I will be useful”

Key Idea # 1: fill an ArrayList
with each line in the file.

Example: Reversible Writing
Let’s write a program that reverses a text file.

51

“I am not a person who contributes”
“And I refuse to believe that”

“I will be useful”

Example: Reversible Writing
Let’s write a program that reverses a text file.

52

“I am not a person who contributes”
“And I refuse to believe that”

“I will be useful”

Example: Reversible Writing
Let’s write a program that reverses a text file.

53

“I am not a person who contributes”
“And I refuse to believe that”

“I will be useful”

Example: Reversible Writing
Let’s write a program that reverses a text file.

54

“I am not a person who contributes”
“And I refuse to believe that”

“I will be useful”

Key Idea # 2: print the ArrayList
items in reverse order.

Example: Reversible Writing
try {

Scanner scanner = new Scanner(new File(FILENAME));

ArrayList<String> lines = new ArrayList<String>();

// Read all lines and store in our ArrayList

while (scanner.hasNextLine()) {

lines.add(scanner.nextLine());

}

// Output the lines from back to front

for (int i = lines.size() - 1; i >= 0; i--) {

println(lines.get(i));

}

scanner.close();

} catch (IOException ex) {

println("Could not read file.");

} 55

Example: Reversible Writing
try {

Scanner scanner = new Scanner(new File(FILENAME));

ArrayList<String> lines = new ArrayList<String>();

// Read all lines and store in our ArrayList

while (scanner.hasNextLine()) {

lines.add(scanner.nextLine());

}

// Output the lines from back to front

for (int i = lines.size() - 1; i >= 0; i--) {

println(lines.get(i));

}

scanner.close();

} catch (IOException ex) {

println("Could not read file.");

} 56

Example: Reversible Writing
try {

Scanner scanner = new Scanner(new File(FILENAME));

ArrayList<String> lines = new ArrayList<String>();

// Read all lines and store in our ArrayList

while (scanner.hasNextLine()) {

lines.add(scanner.nextLine());

}

// Output the lines from back to front

for (int i = lines.size() - 1; i >= 0; i--) {

println(lines.get(i));

}

scanner.close();

} catch (IOException ex) {

println("Could not read file.");

} 57

Example: Reversible Writing
try {

Scanner scanner = new Scanner(new File(FILENAME));

ArrayList<String> lines = new ArrayList<String>();

// Read all lines and store in our ArrayList

while (scanner.hasNextLine()) {

lines.add(scanner.nextLine());

}

// Output the lines from back to front

for (int i = lines.size() - 1; i >= 0; i--) {

println(lines.get(i));

}

scanner.close();

} catch (IOException ex) {

println("Could not read file.");

} 58

Example: Reversible Writing
try {

Scanner scanner = new Scanner(new File(FILENAME));

ArrayList<String> lines = new ArrayList<String>();

// Read all lines and store in our ArrayList

while (scanner.hasNextLine()) {

lines.add(scanner.nextLine());

}

// Output the lines from back to front

for (int i = lines.size() - 1; i >= 0; i--) {

println(lines.get(i));

}

scanner.close();

} catch (IOException ex) {

println("Could not read file.");

} 59

Example: Reversible Writing
try {

Scanner scanner = new Scanner(new File(FILENAME));

ArrayList<String> lines = new ArrayList<String>();

// Read all lines and store in our ArrayList

while (scanner.hasNextLine()) {

lines.add(scanner.nextLine());

}

// Output the lines from back to front

for (int i = lines.size() - 1; i >= 0; i--) {

println(lines.get(i));

}

scanner.close();

} catch (IOException ex) {

println("Could not read file.");

} 60

Example: Reversible Writing
try {

Scanner scanner = new Scanner(new File(FILENAME));

ArrayList<String> lines = new ArrayList<String>();

// Read all lines and store in our ArrayList

while (scanner.hasNextLine()) {

lines.add(scanner.nextLine());

}

// Output the lines from back to front

for (int i = lines.size() - 1; i >= 0; i--) {

println(lines.get(i));

}

scanner.close();

} catch (IOException ex) {

println("Could not read file.");

} 61

Example: Reversible Writing
try {

Scanner scanner = new Scanner(new File(FILENAME));

ArrayList<String> lines = new ArrayList<String>();

// Read all lines and store in our ArrayList

while (scanner.hasNextLine()) {

lines.add(scanner.nextLine());

}

// Output the lines from back to front

for (int i = lines.size() - 1; i >= 0; i--) {

println(lines.get(i));

}

scanner.close();

} catch (IOException ex) {

println("Could not read file.");

} 62

Plan for Today

● Review: 2D Arrays
● ArrayLists
● Example: Reversible Writing
● Example: Trip Planner
● ArrayLists vs. Arrays

63

A Note on Insert/Remove
● If you insert or remove an element from a list, any elements to

the right of it shift to fit

64

A Note on Insert/Remove
● If you insert or remove an element from a list, any elements to

the right of it shift to fit

65

list.add(2, 42); // add the value 42 before index 2

A Note on Insert/Remove
● If you insert or remove an element from a list, any elements to

the right of it shift to fit

66

list.add(2, 42); // add the value 42 before index 2

list.remove(1); // remove the element at index 1

Example: Trip Planner

67

It’s summer, and you want to travel! Let’s write a program to plan our itinerary.

● Program first prompts the user for all the cities they want to visit
● Then, it asks user to re-enter them in the order they’d like to visit them
● Finally, outputs the itinerary: the order in which to visit the cities

Trip Planner: Approach

Cities:

68

Order:

Florence

Trip Planner: Approach

Cities:

69

Order:

Florence Singapore

Trip Planner: Approach

Cities:

70

Order:

Florence Singapore Seattle

Trip Planner: Approach

Cities:

71

Order:

Florence Singapore Seattle

Trip Planner: Approach

Cities:

72

Order:

Florence Seattle

Singapore

Trip Planner: Approach

Cities:

73

Order:

Florence Seattle

Singapore

Trip Planner: Approach

Cities:

74

Order:

Florence

Singapore Seattle

Trip Planner: Approach

Cities:

75

Order:

Florence

Singapore Seattle

Trip Planner: Approach

Cities:

76

Order:

Done!

Singapore Seattle Florence

Let’s Code It!

77

Plan for Today

● Review: 2D Arrays
● ArrayLists
● Example: Reversible Writing
● Example: Trip Planner
● ArrayLists vs. Arrays

78

ArrayLists + Primitives

// Doesn’t compile ~ sad times :(

ArrayList<int> myArrayList = new ArrayList<int>();

79

Unlike Arrays, ArrayLists
can only store Objects.

Wrapper Classes

80

ArrayLists + Primitives
// Use wrapper classes when making an ArrayList

ArrayList<Integer> numList = new ArrayList<Integer>();

// Java converts Integer <-> int automatically!

numList.add(22);

numList.add(44);

int firstNum = numList.get(0); // 22

int secondNum = numList.get(1); // 44

81

Conversion happens automatically!

An Example

82

Let’s check out
an example

Arrays vs. ArrayLists
Operation

Make a new one

Length?

Get element?

Set element?

Loop?

83

Arrays

int arr = new int[5];

arr.length

arr[i]

arr[i] = value

for(int i = 0; i < arr.length; i++)

ArrayLists

ArrayList<String> list = new

ArrayList<String>();

list.size()

list.get(i)

list.set(i, value)

for(String value : list)

Array vs. ArrayLists
Why do both of these exist in the language?
● Arrays are Java's fundamental data storage
● ArrayList is a library built on top of an array

When would you choose an array over an ArrayList?
● When you need a fixed size that you know ahead of time

○ Simpler syntax for getting/setting, more efficient
● Multi-dimensional arrays (e.g. images)
● Histograms/tallying

84

[Extra Practice] Picking Berries

85

[Extra Practice] Picking Berries

86

When you don’t know how many are coming to the party

87

1

hedgehogPartyList

0 1

2 3

2

3

3

I love ArrayLists!!
 I brought all my friends

Plan for Today

● Review: 2D Arrays
● ArrayLists
● Example: Reversible Writing
● Example: Trip Planner
● ArrayLists vs. Arrays

Next Time: HashMaps!

88

