HashMaps

Lecture 19

CST106A, Summer 2019
Sarai Gould && Laura Cruz-Albrecht

With inspiration from slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, Chris Piech and others.

Announcements

e Blank code is available to download from the website.

Announcements

e Midterm grades go out on Gradescope after lecturel
o You will receive an email in your Stanford email inbox.
o Regrade Requests are due by next Monday, Aug. 5th at 10am.
o Sample solutions are online.

e ParaKarel was due at 10am.

e Assignment 5 goes out right after lecture!
o If you work as a pair, submit as a pair on Paperless!

Learning Goal for Today

Know how to store data in and refrieve data from a

HashMap

Plan for Today

Review: Arrays, 2D Arrays, ArrayLists
HashMaps and Animal Sounds
Example: Interesting Dictionary
Example: CountingWords

Example: Swapping Keys and Values

Review 2D: Arrays

rows # columns

Y
int[][] matrix = new int[3][4];

Review 2D: Arrays

int[][] matrix = new int[3][4];

%) 1 2 3

o[419101910 lolele]o
1| —+19/0|9|0 110|000
@ 1 2 3
2l ——lplolole 21010010
@ 1 2 3
An array of arrays A unit (ie, a grid/matrix) ;

Review: 2D Arrays For Loops

e The canonical way to loop over a 2D array is with a

double for loop

type[][] arr = ...
for (int row = @; row < numRows(arr); row++) {

for (int col = @; col < numCols(arr); col++) {

¥

// do something with arr[row][col] ...

Review: images are

I 2D arrays of pixels.
7 7 PN IERALR

Qur First ArrayList

Type of thing your
ArrayList will store Same type here.

: :

ArrayList<String> myArraylList = new ArraylList<String>();

Qur First ArrayList

Can optionally leave
Type of thing your empty because of
ArrayList will store type inference

: :

ArrayList<String> myArraylList = new ArraylList<>();

When you don't know how many ﬁ are coming to the party

e An ordered, resizable list of information
e Can add andremove elements (among other cool functionality)
e Homogenous
e Can store any Object type
e Access individual items by index | love ArrayLists!!
| brought all my friends
e

hedgehogPartylList 12

Data Structures so Far

What if we want to associate multiple types of data
togethere

An arrays and ArrayLists can only store one data type at @
time. How can we create a relationship between data?

Data Structures so Far

List: ArrayList<Type>
Array: typel]
Matrix/2D Array: type[][]

Note: All of these are Objects and passed by reference.

HashMaps!

HashMaps have a map of keys -> values.

If you look up a key in a HashMap, it will give you the
associated value back!

Qur First HashMap

HashMap<String, String> firstMap = new HashMap<String, String>();

Qur First HashMap

Data Type of “keys”
in our HashMap

;

String

Qur First HashMap

Data Type of “values”
in our HashMap

;

String

Qur First HashMap

Repeated types of
key->value pairs

;

String, String

Qur First HashMap

Like ArraylLists, only
stores objects

;

String, Integer

20

Qur First HashMap

Or, we can leave this blank
because of type inferencel

;

<>

21

Qur First HashMap

import java.util.*;

HashMap<String, String> firstMap = new HashMap<String, String>();

22

Qur First HashMap

import java.util.*;

HashMap<String, String> firstMap = new HashMap<String, String>();

Let’'s create a HashMap that maps from animal names to animal sounds!

Basically, we're creating a dictionary where, if we look up an animal’s
name, it will tell us which sound it makes!

23

Qur First HashMap

import java.util.*;

HashMap<String, String> sounds = new HashMap<String, String>();

sounds.put(“dog”, “woof”);

sounds

key value

ﬂ'dog)) ('('WOO_F))

24

Qur First HashMap

import java.util.*;

HashMap<String, String> sounds

sounds.put(“dog”, “woof”);

sounds.put(“cat”, “meow”);

new HashMap<String, String>();

sounds

key value

key

value

ﬂ'dog)) ('('WOO_F))

“C at))

— “meow”

25

Qur First HashMap

import java.util.*;

HashMap<String, String> sounds = new HashMap<String, String>();
sounds.put(“dog”, “woof”);

sounds.put(“cat”, “meow”);

// what does the fox say?*
sounds.put(“fox”, “ring-ding-ding-ding-dingeringeding”);

sounds
key value key value key value
“dog” — “woof” “cat” — “meow” “fox’3ring-ding-ding-ding-dingeringeding”

. . 20
* Music reference... Not just crazy.

Qur First HashMap

import java.util.*;
HashMap<String, String> sounds =
sounds.put(“dog”, “woof”);
sounds.put(“cat”, “meow”);

// what does the fox say?*

new HashMap<String, String>();

sounds.put(“fox”, “ring-ding-ding-ding-dingeringeding”);

sounds
key value key value key value
“dog” — “woof” “cat” — “meow” “fox’3ring-ding-ding-ding-dingeringeding”

* Music reference... Not just crazy.

Z7

Qur First HashMap

import java.util.*;
HashMap<String, String> sounds =
sounds.put(“dog”, “woof”);
sounds.put(“cat”, “meow”);

// what does the fox say?*

new HashMap<String, String>();

sounds.put(“fox”, “ring-ding-ding-ding-dingeringeding”);

String dogSound = sounds.get(“dog”);

sounds
key value key value key value
“dog” — “woof” “cat” — “meow” “fox’3ring-ding-ding-ding-dingeringeding”

* Music reference... Not just crazy.

pAe)

Qur First HashMap

import java.util.*;]
HashMap<String, String> sounds = new HashMap<String, String>(); woof
sounds.put(“dog”, “woof”);
sounds.put(“cat”, “meow”);
// what does the fox say?*
sounds.put(“fox”, “ring-ding-ding-ding-dingeringeding”);

String dogSound = sounds.get(“dog”);

println(dogSound);
sounds
key value key value key value
“dog” — “woof” “cat” — “meow” “fox’3ring-ding-ding-ding-dingeringeding”

. . 27
* Music reference... Not just crazy.

Qur First HashMap

import java.util.*;
HashMap<String, String> sounds =
sounds.put(“dog”, “woof”);
sounds.put(“cat”, “meow”);

// what does the fox say?*

println(dogSound);
println(sounds.get(“cat”));

new HashMap<String, String>(); woof

sounds.put(“fox”, “ring-ding-ding-ding-dingeringeding”);

String dogSound = sounds.get(“dog”);

meow

sounds
key value key value key value
“dog” — “woof” “cat” — “meow” “fox’3ring-ding-ding-ding-dingeringeding”

o

* Music reference... Not just crazy.

SU

Qur First HashMap

import java.util.*;
HashMap<String, String> sounds =
sounds.put(“dog”, “woof”);
sounds.put(“cat”, “meow”);

// what does the fox say?*

println(dogSound);
println(sounds.get(“cat”));

new HashMap<String, String>(); woof

sounds.put(“fox”, “ring-ding-ding-ding-dingeringeding”);

String dogSound = sounds.get(“dog”);

println(sounds.get(“hippopotamus”)); // this isn’t in our map!

meow
null

sounds
key value key value key value
“dog” — “woof” “cat” — “meow” “fox’3ring-ding-ding-ding-dingeringeding”

o3

* Music reference... Not just crazy.

]

What Does This Code Do¢

import java.util.*;

HashMap<String, Integer> numLimbs = new HashMap<>();
numLimbs.put(“dog”, 4);

numLimbs.put(“snail”, 1);

// Ooops

numLimbs.put(“octopus”, 9);

// fixed

numLimbs.put(“octopus”, 8);
println(numLimbs.get(“dog”));

println(numLimbs.get(“snail”));

println(numLimbs.get(“octopus™));

numLimbs

32

What Does This Code Do¢

import java.util.*; Il

HashMap<String, Integer> numLimbs = new HashMap<>(); 4

=

numLimbs.put(“dog”, 4);

numLimbs.put(“snail”, 1);

// Ooops

numLimbs.put(“octopus”, 9); Writing .put(“octopus”, ...)
// fixed a second time will

numLimbs.put(“octopus”, 8);‘/ overwrite the first octopus

println(numlimbs.get(“dog”)); value!

println(numLimbs.get(“snail”));

println(numLimbs.get(“octopus™));

numLimbs
key value key value key value

“dog” — 4 “snail” — 1 “octopus” — 8

33

More HashMap Commands

Make a HashMap

HashMap<keyType, valueType> myMap = new HashMap<keyType, valueType>();

Put and get values into a map

myMap.put(key, value);
myMap.get(key) // returns the corresponding value

Some useful other methods

int size = myMap.size();

myMap.containsKey(key); // returns true or false if key is in map
myMap.keySet(); // gets list of keys

myMap.remove(key); // removes a key from a HashMap

Iterate using a foreach loop

for(keyType key : myMap.keySet()){ // not ordered, so don’t expect it to be sorted!
myMap.get(key); // do something with the key/value pair

34

What Does This Code Do¢

import java.util.*;

HashMap<String, Integer> numLimbs = new HashMap<>();
numLimbs.put(“dog”, 4);

numLimbs.remove(“dog”);

numLimbs.put(“snail”, 1);

numLimbs.put(“snail”, 105);

numLimbs.put(“octopus”, 8);
println(numLimbs.get(“dog”));
println(numLimbs.get(“snail”));

println(numLimbs.get(“octopus™));

numLimbs

35

What Does This Code Do¢

import java.util.*; I
HashMap<String, Integer> numLimbs = new HashMap<>(); null
numLimbs.put(“dog”, 4); 105
numLimbs.remove(“dog”);
numLimbs.put(“snail”, 1);
numLimbs.put(“snail”, 105);
numLimbs.put(“octopus”, 8);
println(numLimbs.get(“dog”));
println(numLimbs.get(“snail”));

println(numLimbs.get(“octopus™));

numLimbs
key value key value
“snail” —» 105 “octopus” — 8

36

What Does This Code Do¢

import java.util.*;

HashMap<String, Integer> numLimbs = new HashMap<>();

numLimbs.
numLimbs.
numLimbs.
numLimbs.

numLimbs.

put(“dog”, 4);

remove (“dog”);

put(“snail”, 1);\ Writing .remove(“dog”)

put (“snail”, 105); will completely remove

put(“octopus”, 8);

println(numLimbs.get(“dog”));

println(numLimbs.get(“snail”));

println(numLimbs.get(“octopus™));

“dog” from our HashMap.

numLimbs
key value key value
“snail” —» 105 “octopus” — 8

null
105

37

What Does This Code Do¢

import java.util.*; Il

HashMap<String, Integer> numLimbs = new HashMap<>(); null

numLimbs.put(“dog”, 4); 10>

numLimbs.remove(“dog”); °

numLimbs . put (“snail”, 1); Writing .put(“snail”, ...) a |

numLimbs.put(“snail”, 105) ;‘/ second fime will |
overwrite the first snail

numLimbs.put(“octopus®, 8);
- put(pus”, 8); value!

println(numLimbs.get(“dog”));

println(numLimbs.get(“snail”));

println(numLimbs.get(“octopus™));

numLimbs
key value key value
“snail” —» 105 “octopus” — 8

38

You Mentioned Dictionaries...

Hey, | just found this new
word today... “Kerfuffle”. Do
you know what it means?

/

Let’s Look Up Kerfuffle in Our Dictionary!

| have an “Interesting Dictionary” file that probably contains
that word!

Let’s write a program to read the file into a HashMap, so we
can easily ask our HashMap what the definition of Kerfuffle is!

40

Let’s Look Up Kerfuffle in Our Dictionary!

Our file is full of Strings and Pseudocode:
formatted as follows:

Word
Definition
Word
Definition
Word
Definition

41

Let’s Look Up Kerfuffle in Our Dictionary!

Our file is full of Strings and Pseudocode:
formatted as follows: ,

open file
Word Key while there are lines in the file:
Definition Value use first line as key in my map

use second line as value for that key
K

Word. , <y close file
Definition Value
Word Key while user types in another word
Definition Valve ask which word they would like the def of

print the associated value/definition from map!

42

Let’'s Code 1!

Code: Printing from our HashMap

private void readDefinitions(HashMap<String, String> dict) {
println("Available Words: ");
for(String key : dict.keySet()) {
println(key);
}

String word = readLine("Which word would you like a definition of?");
while(!word.equals("")) {
if(dict.containsKey(word)) {
println("The definition of " + word + " is:");
println(dict.get(word));
} else {
println("Sorry, that wasn't a valid word!");
}

printiln();
word = readLine("Which word would you like a definition of?");

“+4

Important Note: HashMaps are...

Objects!

This means that HashMaps are passed by reference. If we
pass a HashMap into a method, we can change it without
needing to return the HashMap.

45

What else can you use
HashMaps fore

/

Counting Words

Another common use for HashMaps is for counting
occurrences of something.

Let’'s write a program to count words in some files I've

provided. Based on the most common words, can you guess
what the files are?

47

Let’'s Code 1!

Code: Counting Words

private void printWordCount(HashMap<String, Integer> dict, int threshold) {
for(String key : dict.keySet()) {
if(dict.get(key) >= threshold) {

println(key + ": " + dict.get(key));
}

}

private void fillDictionary(HashMap<String, Integer> wordCount){
try {
Scanner input = new Scanner(new File(TEXT));
while(input.hasNext()) {
String word = input.next();
word = word.toLowerCase();
if(wordCount.containsKey(word)) {
int newCount = wordCount.get(word) + 1;
wordCount.put(word, newCount);
} else {

wordCount.put(word, 1);
}
}

input.close();

} catch (IOException ex) {
println("Couldn't open that file!");
}

49

HashMaps Aren’t Sorted!

Remember, HasnMaps are not sorted. That's why our words
and counts weren’t in any specific order!

50

Extra Exercise: Swapping Keys & Values

Can you write a program which will take a HashMap and
swap the keys and values so that they keys are now the
values and the values are now the keyse

51

Let’'s Code 1!

Code: Swapping Keys & Values

public void run(){
HashMap<String, String> dict = new HashMap<String, String>();

fillDictionary(dict);
dict = swapKeysAndValues(dict);

for(String key: dict.keySet()) {
println(key);
}

}

private HashMap<String, String> swapKeysAndValues(HashMap<String, String> dict) {
HashMap<String, String> reversedKeyValues = new HashMap<String, String>();

for(String key: dict.keySet()) {
String value = dict.get(key);
reversedKeyValues.put(value, key);

}

dict = reversedKeyValues;
return dict;

} 53
S

e Arrraylists are a variable type representing a list of items
e Unlike arrays, Arraylists have:

o The ability to resize dynamically
o Useful methods you can call on them

e Unlike Arraylists, arrays have:

o The ability o store any type of item, not just Objects
e HashMaps are a variable type representing a key-value pairs.
e Unlike arrays and ArraylLists, HashMaps:

o Are not ordered

o Store information associated with a key of any Object type

54

Plan for Today

Review: Arrays, 2D Arrays, ArrayLists
HashMaps and Animal Sounds
Example: Interesting Dictionary
Example: CountingWords

Example: Swapping Keys and Values

Next Time: More HashMaps and Sets!

55

