
HashMaps

CS106A, Summer 2019
Sarai Gould && Laura Cruz-Albrecht

Lecture 19

With inspiration from slides created by Keith Schwarz, Mehran Sahami, Eric Roberts, Stuart Reges, Chris Piech and others.

Announcements

● Blank code is available to download from the website.

2

Announcements

● Midterm grades go out on Gradescope after lecture!
○ You will receive an email in your Stanford email inbox.
○ Regrade Requests are due by next Monday, Aug. 5th at 10am.
○ Sample solutions are online.

● ParaKarel was due at 10am.
● Assignment 5 goes out right after lecture!

○ If you work as a pair, submit as a pair on Paperless!

3

Learning Goal for Today

Know how to store data in and retrieve data from a

HashMap

4

Plan for Today

● Review: Arrays, 2D Arrays, ArrayLists
● HashMaps and Animal Sounds
● Example: Interesting Dictionary
● Example: CountingWords
● Example: Swapping Keys and Values

5

Review 2D: Arrays

int[][] matrix = new int[3][4];

6

rows # columns

Review 2D: Arrays

int[][] matrix = new int[3][4];

7

2

1

0
0
0
0
1
0
2
0
3

0
0
0
1
0
2
0
3

0
0
0
1
0
2
0
3

0 0 0 0 0

0 0 0 0

0

0

0

1

0

2

0

3

1

2

An array of arrays A unit (ie, a grid/matrix)

Review: 2D Arrays For Loops

● The canonical way to loop over a 2D array is with a
double for loop

type[][] arr = …
for (int row = 0; row < numRows(arr); row++) {

for (int col = 0; col < numCols(arr); col++) {

// do something with arr[row][col] ...

}

}

8

9

Review: images are
2D arrays of pixels.

Our First ArrayList

ArrayList<String> myArrayList = new ArrayList<String>();

10

Type of thing your
ArrayList will store Same type here.

Our First ArrayList

ArrayList<String> myArrayList = new ArrayList<>();

11

Type of thing your
ArrayList will store

Can optionally leave
empty because of

type inference

● An ordered, resizable list of information
● Can add and remove elements (among other cool functionality)
● Homogenous
● Can store any Object type
● Access individual items by index

When you don’t know how many are coming to the party

12

1

hedgehogPartyList

0 1

3

2

3

3

I love ArrayLists!!
 I brought all my friends

Data Structures so Far

What if we want to associate multiple types of data
together?

An arrays and ArrayLists can only store one data type at a
time. How can we create a relationship between data?

13

Data Structures so Far

List: ArrayList<Type>

Array: type[]

Matrix/2D Array: type[][]

Note: All of these are Objects and passed by reference.
14

HashMaps!

HashMaps have a map of keys -> values.

If you look up a key in a HashMap, it will give you the
associated value back!

15

Our First HashMap

HashMap<String, String> firstMap = new HashMap<String, String>();

16

Our First HashMap

HashMap<String, String> firstMap = new HashMap<String, String>();

17

Data Type of “keys”
in our HashMap

Our First HashMap

HashMap<String, String> firstMap = new HashMap<String, String>();

18

Data Type of “values”
in our HashMap

Our First HashMap

HashMap<String, String> firstMap = new HashMap<String, String>();

19

Repeated types of
key->value pairs

Our First HashMap

HashMap<String, Integer> firstMap = new HashMap<String, Integer>();

20

Like ArrayLists, only
stores objects

Our First HashMap

HashMap<String, String> firstMap = new HashMap<>();

21

Or, we can leave this blank
because of type inference!

Our First HashMap

import java.util.*;

HashMap<String, String> firstMap = new HashMap<String, String>();

22

Our First HashMap

import java.util.*;

HashMap<String, String> firstMap = new HashMap<String, String>();

23

Let’s create a HashMap that maps from animal names to animal sounds!

Basically, we’re creating a dictionary where, if we look up an animal’s
name, it will tell us which sound it makes!

Our First HashMap

import java.util.*;

HashMap<String, String> sounds = new HashMap<String, String>();

sounds.put(“dog”, “woof”);

24

sounds

“dog” “woof”

key value

Our First HashMap

import java.util.*;

HashMap<String, String> sounds = new HashMap<String, String>();

sounds.put(“dog”, “woof”);

sounds.put(“cat”, “meow”);

25

sounds

“dog” “woof” “cat” “meow”

key value key value

Our First HashMap

import java.util.*;

HashMap<String, String> sounds = new HashMap<String, String>();

sounds.put(“dog”, “woof”);

sounds.put(“cat”, “meow”);

// what does the fox say?*
sounds.put(“fox”, “ring-ding-ding-ding-dingeringeding”);

26

sounds

“dog” “woof” “cat” “meow” “fox” “ring-ding-ding-ding-dingeringeding”

* Music reference… Not just crazy.

key value key value key value

Our First HashMap

import java.util.*;

HashMap<String, String> sounds = new HashMap<String, String>();

sounds.put(“dog”, “woof”);

sounds.put(“cat”, “meow”);

// what does the fox say?*

sounds.put(“fox”, “ring-ding-ding-ding-dingeringeding”);

27

sounds

“dog” “woof” “cat” “meow”

* Music reference… Not just crazy.

“fox” “ring-ding-ding-ding-dingeringeding”

key value key value key value

Our First HashMap

import java.util.*;

HashMap<String, String> sounds = new HashMap<String, String>();

sounds.put(“dog”, “woof”);

sounds.put(“cat”, “meow”);

// what does the fox say?*

sounds.put(“fox”, “ring-ding-ding-ding-dingeringeding”);

String dogSound = sounds.get(“dog”);

28

sounds

“dog” “woof” “cat” “meow”

* Music reference… Not just crazy.

“fox” “ring-ding-ding-ding-dingeringeding”

key value key value key value

Our First HashMap

import java.util.*;

HashMap<String, String> sounds = new HashMap<String, String>();

sounds.put(“dog”, “woof”);

sounds.put(“cat”, “meow”);

// what does the fox say?*

sounds.put(“fox”, “ring-ding-ding-ding-dingeringeding”);

String dogSound = sounds.get(“dog”);

println(dogSound);

29

sounds

“dog” “woof” “cat” “meow”

* Music reference… Not just crazy.

woof

“fox” “ring-ding-ding-ding-dingeringeding”

key value key value key value

Our First HashMap

import java.util.*;

HashMap<String, String> sounds = new HashMap<String, String>();

sounds.put(“dog”, “woof”);

sounds.put(“cat”, “meow”);

// what does the fox say?*

sounds.put(“fox”, “ring-ding-ding-ding-dingeringeding”);

String dogSound = sounds.get(“dog”);

println(dogSound);

println(sounds.get(“cat”));

30

sounds

“dog” “woof” “cat” “meow”

* Music reference… Not just crazy.

woof
meow

“fox” “ring-ding-ding-ding-dingeringeding”

key value key value key value

Our First HashMap

import java.util.*;

HashMap<String, String> sounds = new HashMap<String, String>();

sounds.put(“dog”, “woof”);

sounds.put(“cat”, “meow”);

// what does the fox say?*

sounds.put(“fox”, “ring-ding-ding-ding-dingeringeding”);

String dogSound = sounds.get(“dog”);

println(dogSound);

println(sounds.get(“cat”));

println(sounds.get(“hippopotamus”)); // this isn’t in our map!

31

sounds

“dog” “woof” “cat” “meow”

* Music reference… Not just crazy.

woof
meow
null

“fox” “ring-ding-ding-ding-dingeringeding”

key value key value key value

What Does This Code Do?

import java.util.*;

HashMap<String, Integer> numLimbs = new HashMap<>();

numLimbs.put(“dog”, 4);

numLimbs.put(“snail”, 1);

// Ooops

numLimbs.put(“octopus”, 9);

// fixed

numLimbs.put(“octopus”, 8);

println(numLimbs.get(“dog”));

println(numLimbs.get(“snail”));

println(numLimbs.get(“octopus”));

32

numLimbs

What Does This Code Do?

import java.util.*;

HashMap<String, Integer> numLimbs = new HashMap<>();

numLimbs.put(“dog”, 4);

numLimbs.put(“snail”, 1);

// Ooops

numLimbs.put(“octopus”, 9);

// fixed

numLimbs.put(“octopus”, 8);

println(numLimbs.get(“dog”));

println(numLimbs.get(“snail”));

println(numLimbs.get(“octopus”));

33

numLimbs

“dog” 4 “snail” 1 “octopus” 8

4
1
8

Writing .put(“octopus”, …)
a second time will

overwrite the first octopus
value!

key value key value key value

More HashMap Commands

Make a HashMap
HashMap<keyType, valueType> myMap = new HashMap<keyType, valueType>();

Put and get values into a map
myMap.put(key, value);
myMap.get(key) // returns the corresponding value

Some useful other methods
int size = myMap.size();
myMap.containsKey(key); // returns true or false if key is in map
myMap.keySet(); // gets list of keys
myMap.remove(key); // removes a key from a HashMap

Iterate using a foreach loop
for(keyType key : myMap.keySet()){ // not ordered, so don’t expect it to be sorted!
 myMap.get(key); // do something with the key/value pair
}

34

What Does This Code Do?

import java.util.*;

HashMap<String, Integer> numLimbs = new HashMap<>();

numLimbs.put(“dog”, 4);

numLimbs.remove(“dog”);

numLimbs.put(“snail”, 1);

numLimbs.put(“snail”, 105);

numLimbs.put(“octopus”, 8);

println(numLimbs.get(“dog”));

println(numLimbs.get(“snail”));

println(numLimbs.get(“octopus”));

35

numLimbs

What Does This Code Do?

import java.util.*;

HashMap<String, Integer> numLimbs = new HashMap<>();

numLimbs.put(“dog”, 4);

numLimbs.remove(“dog”);

numLimbs.put(“snail”, 1);

numLimbs.put(“snail”, 105);

numLimbs.put(“octopus”, 8);

println(numLimbs.get(“dog”));

println(numLimbs.get(“snail”));

println(numLimbs.get(“octopus”));

36

numLimbs

“snail” 105 “octopus” 8

null
105
8

key value key value

What Does This Code Do?

import java.util.*;

HashMap<String, Integer> numLimbs = new HashMap<>();

numLimbs.put(“dog”, 4);

numLimbs.remove(“dog”);

numLimbs.put(“snail”, 1);

numLimbs.put(“snail”, 105);

numLimbs.put(“octopus”, 8);

println(numLimbs.get(“dog”));

println(numLimbs.get(“snail”));

println(numLimbs.get(“octopus”));

37

numLimbs

“snail” 105 “octopus” 8

null
105
8

Writing .remove(“dog”)
will completely remove

“dog” from our HashMap.

key value key value

What Does This Code Do?

import java.util.*;

HashMap<String, Integer> numLimbs = new HashMap<>();

numLimbs.put(“dog”, 4);

numLimbs.remove(“dog”);

numLimbs.put(“snail”, 1);

numLimbs.put(“snail”, 105);

numLimbs.put(“octopus”, 8);

println(numLimbs.get(“dog”));

println(numLimbs.get(“snail”));

println(numLimbs.get(“octopus”));

38

numLimbs

“snail” 105 “octopus” 8

null
105
8

Writing .put(“snail”, …) a
second time will

overwrite the first snail
value!

key value key value

You Mentioned Dictionaries...

39

Hey, I just found this new
word today… “Kerfuffle”. Do
you know what it means?

Let’s Look Up Kerfuffle in Our Dictionary!

I have an “Interesting Dictionary” file that probably contains
that word!

Let’s write a program to read the file into a HashMap, so we
can easily ask our HashMap what the definition of Kerfuffle is!

40

Our file is full of Strings and
formatted as follows:

Word
Definition
Word
Definition
Word
Definition

41

Let’s Look Up Kerfuffle in Our Dictionary!

Pseudocode:

Our file is full of Strings and
formatted as follows:

Word
Definition
Word
Definition
Word
Definition

42

Let’s Look Up Kerfuffle in Our Dictionary!

Pseudocode:

open file
while there are lines in the file:
 use first line as key in my map
 use second line as value for that key
close file

while user types in another word
 ask which word they would like the def of
 print the associated value/definition from map!

Key
 Value

Key
 Value

Key
 Value

Let’s Code It!

43

Code: Printing from our HashMap

44

Important Note: HashMaps are...

Objects!

This means that HashMaps are passed by reference. If we
pass a HashMap into a method, we can change it without
needing to return the HashMap.

45

???

46

What else can you use
HashMaps for?

Counting Words

Another common use for HashMaps is for counting
occurrences of something.

Let’s write a program to count words in some files I’ve
provided. Based on the most common words, can you guess
what the files are?

47

Let’s Code It!

48

49

Code: Counting Words

HashMaps Aren’t Sorted!

Remember, HashMaps are not sorted. That’s why our words
and counts weren’t in any specific order!

50

Extra Exercise: Swapping Keys & Values

Can you write a program which will take a HashMap and
swap the keys and values so that they keys are now the
values and the values are now the keys?

51

Let’s Code It!

52

Code: Swapping Keys & Values

53

Recap

● ArrayLists are a variable type representing a list of items
● Unlike arrays, ArrayLists have:

○ The ability to resize dynamically
○ Useful methods you can call on them

● Unlike ArrayLists, arrays have:
○ The ability to store any type of item, not just Objects

● HashMaps are a variable type representing a key-value pairs.
● Unlike arrays and ArrayLists, HashMaps:

○ Are not ordered
○ Store information associated with a key of any Object type

54

Plan for Today

● Review: Arrays, 2D Arrays, ArrayLists
● HashMaps and Animal Sounds
● Example: Interesting Dictionary
● Example: CountingWords
● Example: Swapping Keys and Values

Next Time: More HashMaps and Sets!

55

